V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_fir_sparse_q7.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Q7 sparse FIR filter processing function.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * ------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40 #include "arm_math.h"
emh203 0:3d9c67d97d6f 41
emh203 0:3d9c67d97d6f 42
emh203 0:3d9c67d97d6f 43 /**
emh203 0:3d9c67d97d6f 44 * @ingroup groupFilters
emh203 0:3d9c67d97d6f 45 */
emh203 0:3d9c67d97d6f 46
emh203 0:3d9c67d97d6f 47 /**
emh203 0:3d9c67d97d6f 48 * @addtogroup FIR_Sparse
emh203 0:3d9c67d97d6f 49 * @{
emh203 0:3d9c67d97d6f 50 */
emh203 0:3d9c67d97d6f 51
emh203 0:3d9c67d97d6f 52
emh203 0:3d9c67d97d6f 53 /**
emh203 0:3d9c67d97d6f 54 * @brief Processing function for the Q7 sparse FIR filter.
emh203 0:3d9c67d97d6f 55 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
emh203 0:3d9c67d97d6f 56 * @param[in] *pSrc points to the block of input data.
emh203 0:3d9c67d97d6f 57 * @param[out] *pDst points to the block of output data
emh203 0:3d9c67d97d6f 58 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
emh203 0:3d9c67d97d6f 59 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
emh203 0:3d9c67d97d6f 60 * @param[in] blockSize number of input samples to process per call.
emh203 0:3d9c67d97d6f 61 * @return none.
emh203 0:3d9c67d97d6f 62 *
emh203 0:3d9c67d97d6f 63 * <b>Scaling and Overflow Behavior:</b>
emh203 0:3d9c67d97d6f 64 * \par
emh203 0:3d9c67d97d6f 65 * The function is implemented using a 32-bit internal accumulator.
emh203 0:3d9c67d97d6f 66 * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
emh203 0:3d9c67d97d6f 67 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
emh203 0:3d9c67d97d6f 68 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
emh203 0:3d9c67d97d6f 69 * The accumulator is then converted to 18.7 format by discarding the low 7 bits.
emh203 0:3d9c67d97d6f 70 * Finally, the result is truncated to 1.7 format.
emh203 0:3d9c67d97d6f 71 */
emh203 0:3d9c67d97d6f 72
emh203 0:3d9c67d97d6f 73 void arm_fir_sparse_q7(
emh203 0:3d9c67d97d6f 74 arm_fir_sparse_instance_q7 * S,
emh203 0:3d9c67d97d6f 75 q7_t * pSrc,
emh203 0:3d9c67d97d6f 76 q7_t * pDst,
emh203 0:3d9c67d97d6f 77 q7_t * pScratchIn,
emh203 0:3d9c67d97d6f 78 q31_t * pScratchOut,
emh203 0:3d9c67d97d6f 79 uint32_t blockSize)
emh203 0:3d9c67d97d6f 80 {
emh203 0:3d9c67d97d6f 81
emh203 0:3d9c67d97d6f 82 q7_t *pState = S->pState; /* State pointer */
emh203 0:3d9c67d97d6f 83 q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emh203 0:3d9c67d97d6f 84 q7_t *px; /* Scratch buffer pointer */
emh203 0:3d9c67d97d6f 85 q7_t *py = pState; /* Temporary pointers for state buffer */
emh203 0:3d9c67d97d6f 86 q7_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
emh203 0:3d9c67d97d6f 87 q7_t *pOut = pDst; /* Destination pointer */
emh203 0:3d9c67d97d6f 88 int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
emh203 0:3d9c67d97d6f 89 uint32_t delaySize = S->maxDelay + blockSize; /* state length */
emh203 0:3d9c67d97d6f 90 uint16_t numTaps = S->numTaps; /* Filter order */
emh203 0:3d9c67d97d6f 91 int32_t readIndex; /* Read index of the state buffer */
emh203 0:3d9c67d97d6f 92 uint32_t tapCnt, blkCnt; /* loop counters */
emh203 0:3d9c67d97d6f 93 q7_t coeff = *pCoeffs++; /* Read the coefficient value */
emh203 0:3d9c67d97d6f 94 q31_t *pScr2 = pScratchOut; /* Working pointer for scratch buffer of output values */
emh203 0:3d9c67d97d6f 95 q31_t in;
emh203 0:3d9c67d97d6f 96
emh203 0:3d9c67d97d6f 97
emh203 0:3d9c67d97d6f 98 #ifndef ARM_MATH_CM0_FAMILY
emh203 0:3d9c67d97d6f 99
emh203 0:3d9c67d97d6f 100 /* Run the below code for Cortex-M4 and Cortex-M3 */
emh203 0:3d9c67d97d6f 101
emh203 0:3d9c67d97d6f 102 q7_t in1, in2, in3, in4;
emh203 0:3d9c67d97d6f 103
emh203 0:3d9c67d97d6f 104 /* BlockSize of Input samples are copied into the state buffer */
emh203 0:3d9c67d97d6f 105 /* StateIndex points to the starting position to write in the state buffer */
emh203 0:3d9c67d97d6f 106 arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
emh203 0:3d9c67d97d6f 107 blockSize);
emh203 0:3d9c67d97d6f 108
emh203 0:3d9c67d97d6f 109 /* Loop over the number of taps. */
emh203 0:3d9c67d97d6f 110 tapCnt = numTaps;
emh203 0:3d9c67d97d6f 111
emh203 0:3d9c67d97d6f 112 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 113 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 114
emh203 0:3d9c67d97d6f 115 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 116 if(readIndex < 0)
emh203 0:3d9c67d97d6f 117 {
emh203 0:3d9c67d97d6f 118 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 119 }
emh203 0:3d9c67d97d6f 120
emh203 0:3d9c67d97d6f 121 /* Working pointer for state buffer is updated */
emh203 0:3d9c67d97d6f 122 py = pState;
emh203 0:3d9c67d97d6f 123
emh203 0:3d9c67d97d6f 124 /* blockSize samples are read from the state buffer */
emh203 0:3d9c67d97d6f 125 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
emh203 0:3d9c67d97d6f 126 (int32_t) blockSize, 1, blockSize);
emh203 0:3d9c67d97d6f 127
emh203 0:3d9c67d97d6f 128 /* Working pointer for the scratch buffer of state values */
emh203 0:3d9c67d97d6f 129 px = pb;
emh203 0:3d9c67d97d6f 130
emh203 0:3d9c67d97d6f 131 /* Working pointer for scratch buffer of output values */
emh203 0:3d9c67d97d6f 132 pScratchOut = pScr2;
emh203 0:3d9c67d97d6f 133
emh203 0:3d9c67d97d6f 134 /* Loop over the blockSize. Unroll by a factor of 4.
emh203 0:3d9c67d97d6f 135 * Compute 4 multiplications at a time. */
emh203 0:3d9c67d97d6f 136 blkCnt = blockSize >> 2;
emh203 0:3d9c67d97d6f 137
emh203 0:3d9c67d97d6f 138 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 139 {
emh203 0:3d9c67d97d6f 140 /* Perform multiplication and store in the scratch buffer */
emh203 0:3d9c67d97d6f 141 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 142 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 143 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 144 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 145
emh203 0:3d9c67d97d6f 146 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 147 blkCnt--;
emh203 0:3d9c67d97d6f 148 }
emh203 0:3d9c67d97d6f 149
emh203 0:3d9c67d97d6f 150 /* If the blockSize is not a multiple of 4,
emh203 0:3d9c67d97d6f 151 * compute the remaining samples */
emh203 0:3d9c67d97d6f 152 blkCnt = blockSize % 0x4u;
emh203 0:3d9c67d97d6f 153
emh203 0:3d9c67d97d6f 154 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 155 {
emh203 0:3d9c67d97d6f 156 /* Perform multiplication and store in the scratch buffer */
emh203 0:3d9c67d97d6f 157 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 158
emh203 0:3d9c67d97d6f 159 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 160 blkCnt--;
emh203 0:3d9c67d97d6f 161 }
emh203 0:3d9c67d97d6f 162
emh203 0:3d9c67d97d6f 163 /* Load the coefficient value and
emh203 0:3d9c67d97d6f 164 * increment the coefficient buffer for the next set of state values */
emh203 0:3d9c67d97d6f 165 coeff = *pCoeffs++;
emh203 0:3d9c67d97d6f 166
emh203 0:3d9c67d97d6f 167 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 168 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 169
emh203 0:3d9c67d97d6f 170 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 171 if(readIndex < 0)
emh203 0:3d9c67d97d6f 172 {
emh203 0:3d9c67d97d6f 173 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 174 }
emh203 0:3d9c67d97d6f 175
emh203 0:3d9c67d97d6f 176 /* Loop over the number of taps. */
emh203 0:3d9c67d97d6f 177 tapCnt = (uint32_t) numTaps - 1u;
emh203 0:3d9c67d97d6f 178
emh203 0:3d9c67d97d6f 179 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 180 {
emh203 0:3d9c67d97d6f 181 /* Working pointer for state buffer is updated */
emh203 0:3d9c67d97d6f 182 py = pState;
emh203 0:3d9c67d97d6f 183
emh203 0:3d9c67d97d6f 184 /* blockSize samples are read from the state buffer */
emh203 0:3d9c67d97d6f 185 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
emh203 0:3d9c67d97d6f 186 (int32_t) blockSize, 1, blockSize);
emh203 0:3d9c67d97d6f 187
emh203 0:3d9c67d97d6f 188 /* Working pointer for the scratch buffer of state values */
emh203 0:3d9c67d97d6f 189 px = pb;
emh203 0:3d9c67d97d6f 190
emh203 0:3d9c67d97d6f 191 /* Working pointer for scratch buffer of output values */
emh203 0:3d9c67d97d6f 192 pScratchOut = pScr2;
emh203 0:3d9c67d97d6f 193
emh203 0:3d9c67d97d6f 194 /* Loop over the blockSize. Unroll by a factor of 4.
emh203 0:3d9c67d97d6f 195 * Compute 4 MACS at a time. */
emh203 0:3d9c67d97d6f 196 blkCnt = blockSize >> 2;
emh203 0:3d9c67d97d6f 197
emh203 0:3d9c67d97d6f 198 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 199 {
emh203 0:3d9c67d97d6f 200 /* Perform Multiply-Accumulate */
emh203 0:3d9c67d97d6f 201 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 202 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 203 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 204 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 205 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 206 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 207 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 208 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 209
emh203 0:3d9c67d97d6f 210 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 211 blkCnt--;
emh203 0:3d9c67d97d6f 212 }
emh203 0:3d9c67d97d6f 213
emh203 0:3d9c67d97d6f 214 /* If the blockSize is not a multiple of 4,
emh203 0:3d9c67d97d6f 215 * compute the remaining samples */
emh203 0:3d9c67d97d6f 216 blkCnt = blockSize % 0x4u;
emh203 0:3d9c67d97d6f 217
emh203 0:3d9c67d97d6f 218 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 219 {
emh203 0:3d9c67d97d6f 220 /* Perform Multiply-Accumulate */
emh203 0:3d9c67d97d6f 221 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 222 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 223
emh203 0:3d9c67d97d6f 224 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 225 blkCnt--;
emh203 0:3d9c67d97d6f 226 }
emh203 0:3d9c67d97d6f 227
emh203 0:3d9c67d97d6f 228 /* Load the coefficient value and
emh203 0:3d9c67d97d6f 229 * increment the coefficient buffer for the next set of state values */
emh203 0:3d9c67d97d6f 230 coeff = *pCoeffs++;
emh203 0:3d9c67d97d6f 231
emh203 0:3d9c67d97d6f 232 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 233 readIndex = ((int32_t) S->stateIndex -
emh203 0:3d9c67d97d6f 234 (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 235
emh203 0:3d9c67d97d6f 236 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 237 if(readIndex < 0)
emh203 0:3d9c67d97d6f 238 {
emh203 0:3d9c67d97d6f 239 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 240 }
emh203 0:3d9c67d97d6f 241
emh203 0:3d9c67d97d6f 242 /* Decrement the tap loop counter */
emh203 0:3d9c67d97d6f 243 tapCnt--;
emh203 0:3d9c67d97d6f 244 }
emh203 0:3d9c67d97d6f 245
emh203 0:3d9c67d97d6f 246 /* All the output values are in pScratchOut buffer.
emh203 0:3d9c67d97d6f 247 Convert them into 1.15 format, saturate and store in the destination buffer. */
emh203 0:3d9c67d97d6f 248 /* Loop over the blockSize. */
emh203 0:3d9c67d97d6f 249 blkCnt = blockSize >> 2;
emh203 0:3d9c67d97d6f 250
emh203 0:3d9c67d97d6f 251 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 252 {
emh203 0:3d9c67d97d6f 253 in1 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 254 in2 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 255 in3 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 256 in4 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 257
emh203 0:3d9c67d97d6f 258 *__SIMD32(pOut)++ = __PACKq7(in1, in2, in3, in4);
emh203 0:3d9c67d97d6f 259
emh203 0:3d9c67d97d6f 260 /* Decrement the blockSize loop counter */
emh203 0:3d9c67d97d6f 261 blkCnt--;
emh203 0:3d9c67d97d6f 262 }
emh203 0:3d9c67d97d6f 263
emh203 0:3d9c67d97d6f 264 /* If the blockSize is not a multiple of 4,
emh203 0:3d9c67d97d6f 265 remaining samples are processed in the below loop */
emh203 0:3d9c67d97d6f 266 blkCnt = blockSize % 0x4u;
emh203 0:3d9c67d97d6f 267
emh203 0:3d9c67d97d6f 268 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 269 {
emh203 0:3d9c67d97d6f 270 *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 271
emh203 0:3d9c67d97d6f 272 /* Decrement the blockSize loop counter */
emh203 0:3d9c67d97d6f 273 blkCnt--;
emh203 0:3d9c67d97d6f 274 }
emh203 0:3d9c67d97d6f 275
emh203 0:3d9c67d97d6f 276 #else
emh203 0:3d9c67d97d6f 277
emh203 0:3d9c67d97d6f 278 /* Run the below code for Cortex-M0 */
emh203 0:3d9c67d97d6f 279
emh203 0:3d9c67d97d6f 280 /* BlockSize of Input samples are copied into the state buffer */
emh203 0:3d9c67d97d6f 281 /* StateIndex points to the starting position to write in the state buffer */
emh203 0:3d9c67d97d6f 282 arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
emh203 0:3d9c67d97d6f 283 blockSize);
emh203 0:3d9c67d97d6f 284
emh203 0:3d9c67d97d6f 285 /* Loop over the number of taps. */
emh203 0:3d9c67d97d6f 286 tapCnt = numTaps;
emh203 0:3d9c67d97d6f 287
emh203 0:3d9c67d97d6f 288 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 289 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 290
emh203 0:3d9c67d97d6f 291 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 292 if(readIndex < 0)
emh203 0:3d9c67d97d6f 293 {
emh203 0:3d9c67d97d6f 294 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 295 }
emh203 0:3d9c67d97d6f 296
emh203 0:3d9c67d97d6f 297 /* Working pointer for state buffer is updated */
emh203 0:3d9c67d97d6f 298 py = pState;
emh203 0:3d9c67d97d6f 299
emh203 0:3d9c67d97d6f 300 /* blockSize samples are read from the state buffer */
emh203 0:3d9c67d97d6f 301 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
emh203 0:3d9c67d97d6f 302 (int32_t) blockSize, 1, blockSize);
emh203 0:3d9c67d97d6f 303
emh203 0:3d9c67d97d6f 304 /* Working pointer for the scratch buffer of state values */
emh203 0:3d9c67d97d6f 305 px = pb;
emh203 0:3d9c67d97d6f 306
emh203 0:3d9c67d97d6f 307 /* Working pointer for scratch buffer of output values */
emh203 0:3d9c67d97d6f 308 pScratchOut = pScr2;
emh203 0:3d9c67d97d6f 309
emh203 0:3d9c67d97d6f 310 /* Loop over the blockSize */
emh203 0:3d9c67d97d6f 311 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 312
emh203 0:3d9c67d97d6f 313 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 314 {
emh203 0:3d9c67d97d6f 315 /* Perform multiplication and store in the scratch buffer */
emh203 0:3d9c67d97d6f 316 *pScratchOut++ = ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 317
emh203 0:3d9c67d97d6f 318 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 319 blkCnt--;
emh203 0:3d9c67d97d6f 320 }
emh203 0:3d9c67d97d6f 321
emh203 0:3d9c67d97d6f 322 /* Load the coefficient value and
emh203 0:3d9c67d97d6f 323 * increment the coefficient buffer for the next set of state values */
emh203 0:3d9c67d97d6f 324 coeff = *pCoeffs++;
emh203 0:3d9c67d97d6f 325
emh203 0:3d9c67d97d6f 326 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 327 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 328
emh203 0:3d9c67d97d6f 329 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 330 if(readIndex < 0)
emh203 0:3d9c67d97d6f 331 {
emh203 0:3d9c67d97d6f 332 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 333 }
emh203 0:3d9c67d97d6f 334
emh203 0:3d9c67d97d6f 335 /* Loop over the number of taps. */
emh203 0:3d9c67d97d6f 336 tapCnt = (uint32_t) numTaps - 1u;
emh203 0:3d9c67d97d6f 337
emh203 0:3d9c67d97d6f 338 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 339 {
emh203 0:3d9c67d97d6f 340 /* Working pointer for state buffer is updated */
emh203 0:3d9c67d97d6f 341 py = pState;
emh203 0:3d9c67d97d6f 342
emh203 0:3d9c67d97d6f 343 /* blockSize samples are read from the state buffer */
emh203 0:3d9c67d97d6f 344 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
emh203 0:3d9c67d97d6f 345 (int32_t) blockSize, 1, blockSize);
emh203 0:3d9c67d97d6f 346
emh203 0:3d9c67d97d6f 347 /* Working pointer for the scratch buffer of state values */
emh203 0:3d9c67d97d6f 348 px = pb;
emh203 0:3d9c67d97d6f 349
emh203 0:3d9c67d97d6f 350 /* Working pointer for scratch buffer of output values */
emh203 0:3d9c67d97d6f 351 pScratchOut = pScr2;
emh203 0:3d9c67d97d6f 352
emh203 0:3d9c67d97d6f 353 /* Loop over the blockSize */
emh203 0:3d9c67d97d6f 354 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 355
emh203 0:3d9c67d97d6f 356 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 357 {
emh203 0:3d9c67d97d6f 358 /* Perform Multiply-Accumulate */
emh203 0:3d9c67d97d6f 359 in = *pScratchOut + ((q31_t) * px++ * coeff);
emh203 0:3d9c67d97d6f 360 *pScratchOut++ = in;
emh203 0:3d9c67d97d6f 361
emh203 0:3d9c67d97d6f 362 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 363 blkCnt--;
emh203 0:3d9c67d97d6f 364 }
emh203 0:3d9c67d97d6f 365
emh203 0:3d9c67d97d6f 366 /* Load the coefficient value and
emh203 0:3d9c67d97d6f 367 * increment the coefficient buffer for the next set of state values */
emh203 0:3d9c67d97d6f 368 coeff = *pCoeffs++;
emh203 0:3d9c67d97d6f 369
emh203 0:3d9c67d97d6f 370 /* Read Index, from where the state buffer should be read, is calculated. */
emh203 0:3d9c67d97d6f 371 readIndex =
emh203 0:3d9c67d97d6f 372 ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
emh203 0:3d9c67d97d6f 373
emh203 0:3d9c67d97d6f 374 /* Wraparound of readIndex */
emh203 0:3d9c67d97d6f 375 if(readIndex < 0)
emh203 0:3d9c67d97d6f 376 {
emh203 0:3d9c67d97d6f 377 readIndex += (int32_t) delaySize;
emh203 0:3d9c67d97d6f 378 }
emh203 0:3d9c67d97d6f 379
emh203 0:3d9c67d97d6f 380 /* Decrement the tap loop counter */
emh203 0:3d9c67d97d6f 381 tapCnt--;
emh203 0:3d9c67d97d6f 382 }
emh203 0:3d9c67d97d6f 383
emh203 0:3d9c67d97d6f 384 /* All the output values are in pScratchOut buffer.
emh203 0:3d9c67d97d6f 385 Convert them into 1.15 format, saturate and store in the destination buffer. */
emh203 0:3d9c67d97d6f 386 /* Loop over the blockSize. */
emh203 0:3d9c67d97d6f 387 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 388
emh203 0:3d9c67d97d6f 389 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 390 {
emh203 0:3d9c67d97d6f 391 *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);
emh203 0:3d9c67d97d6f 392
emh203 0:3d9c67d97d6f 393 /* Decrement the blockSize loop counter */
emh203 0:3d9c67d97d6f 394 blkCnt--;
emh203 0:3d9c67d97d6f 395 }
emh203 0:3d9c67d97d6f 396
emh203 0:3d9c67d97d6f 397 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emh203 0:3d9c67d97d6f 398
emh203 0:3d9c67d97d6f 399 }
emh203 0:3d9c67d97d6f 400
emh203 0:3d9c67d97d6f 401 /**
emh203 0:3d9c67d97d6f 402 * @} end of FIR_Sparse group
emh203 0:3d9c67d97d6f 403 */