V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_conv_partial_fast_q31.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Fast Q31 Partial convolution.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * -------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40
emh203 0:3d9c67d97d6f 41 #include "arm_math.h"
emh203 0:3d9c67d97d6f 42
emh203 0:3d9c67d97d6f 43 /**
emh203 0:3d9c67d97d6f 44 * @ingroup groupFilters
emh203 0:3d9c67d97d6f 45 */
emh203 0:3d9c67d97d6f 46
emh203 0:3d9c67d97d6f 47 /**
emh203 0:3d9c67d97d6f 48 * @addtogroup PartialConv
emh203 0:3d9c67d97d6f 49 * @{
emh203 0:3d9c67d97d6f 50 */
emh203 0:3d9c67d97d6f 51
emh203 0:3d9c67d97d6f 52 /**
emh203 0:3d9c67d97d6f 53 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
emh203 0:3d9c67d97d6f 54 * @param[in] *pSrcA points to the first input sequence.
emh203 0:3d9c67d97d6f 55 * @param[in] srcALen length of the first input sequence.
emh203 0:3d9c67d97d6f 56 * @param[in] *pSrcB points to the second input sequence.
emh203 0:3d9c67d97d6f 57 * @param[in] srcBLen length of the second input sequence.
emh203 0:3d9c67d97d6f 58 * @param[out] *pDst points to the location where the output result is written.
emh203 0:3d9c67d97d6f 59 * @param[in] firstIndex is the first output sample to start with.
emh203 0:3d9c67d97d6f 60 * @param[in] numPoints is the number of output points to be computed.
emh203 0:3d9c67d97d6f 61 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
emh203 0:3d9c67d97d6f 62 *
emh203 0:3d9c67d97d6f 63 * \par
emh203 0:3d9c67d97d6f 64 * See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
emh203 0:3d9c67d97d6f 65 */
emh203 0:3d9c67d97d6f 66
emh203 0:3d9c67d97d6f 67 arm_status arm_conv_partial_fast_q31(
emh203 0:3d9c67d97d6f 68 q31_t * pSrcA,
emh203 0:3d9c67d97d6f 69 uint32_t srcALen,
emh203 0:3d9c67d97d6f 70 q31_t * pSrcB,
emh203 0:3d9c67d97d6f 71 uint32_t srcBLen,
emh203 0:3d9c67d97d6f 72 q31_t * pDst,
emh203 0:3d9c67d97d6f 73 uint32_t firstIndex,
emh203 0:3d9c67d97d6f 74 uint32_t numPoints)
emh203 0:3d9c67d97d6f 75 {
emh203 0:3d9c67d97d6f 76 q31_t *pIn1; /* inputA pointer */
emh203 0:3d9c67d97d6f 77 q31_t *pIn2; /* inputB pointer */
emh203 0:3d9c67d97d6f 78 q31_t *pOut = pDst; /* output pointer */
emh203 0:3d9c67d97d6f 79 q31_t *px; /* Intermediate inputA pointer */
emh203 0:3d9c67d97d6f 80 q31_t *py; /* Intermediate inputB pointer */
emh203 0:3d9c67d97d6f 81 q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
emh203 0:3d9c67d97d6f 82 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
emh203 0:3d9c67d97d6f 83 q31_t x0, x1, x2, x3, c0;
emh203 0:3d9c67d97d6f 84 uint32_t j, k, count, check, blkCnt;
emh203 0:3d9c67d97d6f 85 int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
emh203 0:3d9c67d97d6f 86 arm_status status; /* status of Partial convolution */
emh203 0:3d9c67d97d6f 87
emh203 0:3d9c67d97d6f 88
emh203 0:3d9c67d97d6f 89 /* Check for range of output samples to be calculated */
emh203 0:3d9c67d97d6f 90 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
emh203 0:3d9c67d97d6f 91 {
emh203 0:3d9c67d97d6f 92 /* Set status as ARM_MATH_ARGUMENT_ERROR */
emh203 0:3d9c67d97d6f 93 status = ARM_MATH_ARGUMENT_ERROR;
emh203 0:3d9c67d97d6f 94 }
emh203 0:3d9c67d97d6f 95 else
emh203 0:3d9c67d97d6f 96 {
emh203 0:3d9c67d97d6f 97
emh203 0:3d9c67d97d6f 98 /* The algorithm implementation is based on the lengths of the inputs. */
emh203 0:3d9c67d97d6f 99 /* srcB is always made to slide across srcA. */
emh203 0:3d9c67d97d6f 100 /* So srcBLen is always considered as shorter or equal to srcALen */
emh203 0:3d9c67d97d6f 101 if(srcALen >= srcBLen)
emh203 0:3d9c67d97d6f 102 {
emh203 0:3d9c67d97d6f 103 /* Initialization of inputA pointer */
emh203 0:3d9c67d97d6f 104 pIn1 = pSrcA;
emh203 0:3d9c67d97d6f 105
emh203 0:3d9c67d97d6f 106 /* Initialization of inputB pointer */
emh203 0:3d9c67d97d6f 107 pIn2 = pSrcB;
emh203 0:3d9c67d97d6f 108 }
emh203 0:3d9c67d97d6f 109 else
emh203 0:3d9c67d97d6f 110 {
emh203 0:3d9c67d97d6f 111 /* Initialization of inputA pointer */
emh203 0:3d9c67d97d6f 112 pIn1 = pSrcB;
emh203 0:3d9c67d97d6f 113
emh203 0:3d9c67d97d6f 114 /* Initialization of inputB pointer */
emh203 0:3d9c67d97d6f 115 pIn2 = pSrcA;
emh203 0:3d9c67d97d6f 116
emh203 0:3d9c67d97d6f 117 /* srcBLen is always considered as shorter or equal to srcALen */
emh203 0:3d9c67d97d6f 118 j = srcBLen;
emh203 0:3d9c67d97d6f 119 srcBLen = srcALen;
emh203 0:3d9c67d97d6f 120 srcALen = j;
emh203 0:3d9c67d97d6f 121 }
emh203 0:3d9c67d97d6f 122
emh203 0:3d9c67d97d6f 123 /* Conditions to check which loopCounter holds
emh203 0:3d9c67d97d6f 124 * the first and last indices of the output samples to be calculated. */
emh203 0:3d9c67d97d6f 125 check = firstIndex + numPoints;
emh203 0:3d9c67d97d6f 126 blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
emh203 0:3d9c67d97d6f 127 blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
emh203 0:3d9c67d97d6f 128 blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
emh203 0:3d9c67d97d6f 129 blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
emh203 0:3d9c67d97d6f 130 (int32_t) numPoints) : 0;
emh203 0:3d9c67d97d6f 131 blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
emh203 0:3d9c67d97d6f 132 (int32_t) firstIndex);
emh203 0:3d9c67d97d6f 133 blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
emh203 0:3d9c67d97d6f 134
emh203 0:3d9c67d97d6f 135 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
emh203 0:3d9c67d97d6f 136 /* The function is internally
emh203 0:3d9c67d97d6f 137 * divided into three stages according to the number of multiplications that has to be
emh203 0:3d9c67d97d6f 138 * taken place between inputA samples and inputB samples. In the first stage of the
emh203 0:3d9c67d97d6f 139 * algorithm, the multiplications increase by one for every iteration.
emh203 0:3d9c67d97d6f 140 * In the second stage of the algorithm, srcBLen number of multiplications are done.
emh203 0:3d9c67d97d6f 141 * In the third stage of the algorithm, the multiplications decrease by one
emh203 0:3d9c67d97d6f 142 * for every iteration. */
emh203 0:3d9c67d97d6f 143
emh203 0:3d9c67d97d6f 144 /* Set the output pointer to point to the firstIndex
emh203 0:3d9c67d97d6f 145 * of the output sample to be calculated. */
emh203 0:3d9c67d97d6f 146 pOut = pDst + firstIndex;
emh203 0:3d9c67d97d6f 147
emh203 0:3d9c67d97d6f 148 /* --------------------------
emh203 0:3d9c67d97d6f 149 * Initializations of stage1
emh203 0:3d9c67d97d6f 150 * -------------------------*/
emh203 0:3d9c67d97d6f 151
emh203 0:3d9c67d97d6f 152 /* sum = x[0] * y[0]
emh203 0:3d9c67d97d6f 153 * sum = x[0] * y[1] + x[1] * y[0]
emh203 0:3d9c67d97d6f 154 * ....
emh203 0:3d9c67d97d6f 155 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
emh203 0:3d9c67d97d6f 156 */
emh203 0:3d9c67d97d6f 157
emh203 0:3d9c67d97d6f 158 /* In this stage the MAC operations are increased by 1 for every iteration.
emh203 0:3d9c67d97d6f 159 The count variable holds the number of MAC operations performed.
emh203 0:3d9c67d97d6f 160 Since the partial convolution starts from firstIndex
emh203 0:3d9c67d97d6f 161 Number of Macs to be performed is firstIndex + 1 */
emh203 0:3d9c67d97d6f 162 count = 1u + firstIndex;
emh203 0:3d9c67d97d6f 163
emh203 0:3d9c67d97d6f 164 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 165 px = pIn1;
emh203 0:3d9c67d97d6f 166
emh203 0:3d9c67d97d6f 167 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 168 pSrc2 = pIn2 + firstIndex;
emh203 0:3d9c67d97d6f 169 py = pSrc2;
emh203 0:3d9c67d97d6f 170
emh203 0:3d9c67d97d6f 171 /* ------------------------
emh203 0:3d9c67d97d6f 172 * Stage1 process
emh203 0:3d9c67d97d6f 173 * ----------------------*/
emh203 0:3d9c67d97d6f 174
emh203 0:3d9c67d97d6f 175 /* The first loop starts here */
emh203 0:3d9c67d97d6f 176 while(blockSize1 > 0)
emh203 0:3d9c67d97d6f 177 {
emh203 0:3d9c67d97d6f 178 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 179 sum = 0;
emh203 0:3d9c67d97d6f 180
emh203 0:3d9c67d97d6f 181 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 182 k = count >> 2u;
emh203 0:3d9c67d97d6f 183
emh203 0:3d9c67d97d6f 184 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 185 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 186 while(k > 0u)
emh203 0:3d9c67d97d6f 187 {
emh203 0:3d9c67d97d6f 188 /* x[0] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 189 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 190 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 191
emh203 0:3d9c67d97d6f 192 /* x[1] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 193 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 194 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 195
emh203 0:3d9c67d97d6f 196 /* x[2] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 197 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 198 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 199
emh203 0:3d9c67d97d6f 200 /* x[3] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 201 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 202 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 203
emh203 0:3d9c67d97d6f 204 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 205 k--;
emh203 0:3d9c67d97d6f 206 }
emh203 0:3d9c67d97d6f 207
emh203 0:3d9c67d97d6f 208 /* If the count is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 209 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 210 k = count % 0x4u;
emh203 0:3d9c67d97d6f 211
emh203 0:3d9c67d97d6f 212 while(k > 0u)
emh203 0:3d9c67d97d6f 213 {
emh203 0:3d9c67d97d6f 214 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 215 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 216 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 217
emh203 0:3d9c67d97d6f 218 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 219 k--;
emh203 0:3d9c67d97d6f 220 }
emh203 0:3d9c67d97d6f 221
emh203 0:3d9c67d97d6f 222 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 223 *pOut++ = sum << 1;
emh203 0:3d9c67d97d6f 224
emh203 0:3d9c67d97d6f 225 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 226 py = ++pSrc2;
emh203 0:3d9c67d97d6f 227 px = pIn1;
emh203 0:3d9c67d97d6f 228
emh203 0:3d9c67d97d6f 229 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 230 count++;
emh203 0:3d9c67d97d6f 231
emh203 0:3d9c67d97d6f 232 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 233 blockSize1--;
emh203 0:3d9c67d97d6f 234 }
emh203 0:3d9c67d97d6f 235
emh203 0:3d9c67d97d6f 236 /* --------------------------
emh203 0:3d9c67d97d6f 237 * Initializations of stage2
emh203 0:3d9c67d97d6f 238 * ------------------------*/
emh203 0:3d9c67d97d6f 239
emh203 0:3d9c67d97d6f 240 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
emh203 0:3d9c67d97d6f 241 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
emh203 0:3d9c67d97d6f 242 * ....
emh203 0:3d9c67d97d6f 243 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
emh203 0:3d9c67d97d6f 244 */
emh203 0:3d9c67d97d6f 245
emh203 0:3d9c67d97d6f 246 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 247 if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
emh203 0:3d9c67d97d6f 248 {
emh203 0:3d9c67d97d6f 249 px = pIn1 + firstIndex - srcBLen + 1;
emh203 0:3d9c67d97d6f 250 }
emh203 0:3d9c67d97d6f 251 else
emh203 0:3d9c67d97d6f 252 {
emh203 0:3d9c67d97d6f 253 px = pIn1;
emh203 0:3d9c67d97d6f 254 }
emh203 0:3d9c67d97d6f 255
emh203 0:3d9c67d97d6f 256 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 257 pSrc2 = pIn2 + (srcBLen - 1u);
emh203 0:3d9c67d97d6f 258 py = pSrc2;
emh203 0:3d9c67d97d6f 259
emh203 0:3d9c67d97d6f 260 /* count is index by which the pointer pIn1 to be incremented */
emh203 0:3d9c67d97d6f 261 count = 0u;
emh203 0:3d9c67d97d6f 262
emh203 0:3d9c67d97d6f 263 /* -------------------
emh203 0:3d9c67d97d6f 264 * Stage2 process
emh203 0:3d9c67d97d6f 265 * ------------------*/
emh203 0:3d9c67d97d6f 266
emh203 0:3d9c67d97d6f 267 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emh203 0:3d9c67d97d6f 268 * So, to loop unroll over blockSize2,
emh203 0:3d9c67d97d6f 269 * srcBLen should be greater than or equal to 4 */
emh203 0:3d9c67d97d6f 270 if(srcBLen >= 4u)
emh203 0:3d9c67d97d6f 271 {
emh203 0:3d9c67d97d6f 272 /* Loop unroll over blockSize2 */
emh203 0:3d9c67d97d6f 273 blkCnt = ((uint32_t) blockSize2 >> 2u);
emh203 0:3d9c67d97d6f 274
emh203 0:3d9c67d97d6f 275 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 276 {
emh203 0:3d9c67d97d6f 277 /* Set all accumulators to zero */
emh203 0:3d9c67d97d6f 278 acc0 = 0;
emh203 0:3d9c67d97d6f 279 acc1 = 0;
emh203 0:3d9c67d97d6f 280 acc2 = 0;
emh203 0:3d9c67d97d6f 281 acc3 = 0;
emh203 0:3d9c67d97d6f 282
emh203 0:3d9c67d97d6f 283 /* read x[0], x[1], x[2] samples */
emh203 0:3d9c67d97d6f 284 x0 = *(px++);
emh203 0:3d9c67d97d6f 285 x1 = *(px++);
emh203 0:3d9c67d97d6f 286 x2 = *(px++);
emh203 0:3d9c67d97d6f 287
emh203 0:3d9c67d97d6f 288 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 289 k = srcBLen >> 2u;
emh203 0:3d9c67d97d6f 290
emh203 0:3d9c67d97d6f 291 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 292 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 293 do
emh203 0:3d9c67d97d6f 294 {
emh203 0:3d9c67d97d6f 295 /* Read y[srcBLen - 1] sample */
emh203 0:3d9c67d97d6f 296 c0 = *(py--);
emh203 0:3d9c67d97d6f 297
emh203 0:3d9c67d97d6f 298 /* Read x[3] sample */
emh203 0:3d9c67d97d6f 299 x3 = *(px++);
emh203 0:3d9c67d97d6f 300
emh203 0:3d9c67d97d6f 301 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 302 /* acc0 += x[0] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 303 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
emh203 0:3d9c67d97d6f 304
emh203 0:3d9c67d97d6f 305 /* acc1 += x[1] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 306 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
emh203 0:3d9c67d97d6f 307
emh203 0:3d9c67d97d6f 308 /* acc2 += x[2] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 309 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
emh203 0:3d9c67d97d6f 310
emh203 0:3d9c67d97d6f 311 /* acc3 += x[3] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 312 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
emh203 0:3d9c67d97d6f 313
emh203 0:3d9c67d97d6f 314 /* Read y[srcBLen - 2] sample */
emh203 0:3d9c67d97d6f 315 c0 = *(py--);
emh203 0:3d9c67d97d6f 316
emh203 0:3d9c67d97d6f 317 /* Read x[4] sample */
emh203 0:3d9c67d97d6f 318 x0 = *(px++);
emh203 0:3d9c67d97d6f 319
emh203 0:3d9c67d97d6f 320 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 321 /* acc0 += x[1] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 322 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
emh203 0:3d9c67d97d6f 323 /* acc1 += x[2] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 324 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
emh203 0:3d9c67d97d6f 325 /* acc2 += x[3] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 326 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
emh203 0:3d9c67d97d6f 327 /* acc3 += x[4] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 328 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
emh203 0:3d9c67d97d6f 329
emh203 0:3d9c67d97d6f 330 /* Read y[srcBLen - 3] sample */
emh203 0:3d9c67d97d6f 331 c0 = *(py--);
emh203 0:3d9c67d97d6f 332
emh203 0:3d9c67d97d6f 333 /* Read x[5] sample */
emh203 0:3d9c67d97d6f 334 x1 = *(px++);
emh203 0:3d9c67d97d6f 335
emh203 0:3d9c67d97d6f 336 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 337 /* acc0 += x[2] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 338 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
emh203 0:3d9c67d97d6f 339 /* acc1 += x[3] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 340 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
emh203 0:3d9c67d97d6f 341 /* acc2 += x[4] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 342 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
emh203 0:3d9c67d97d6f 343 /* acc3 += x[5] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 344 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
emh203 0:3d9c67d97d6f 345
emh203 0:3d9c67d97d6f 346 /* Read y[srcBLen - 4] sample */
emh203 0:3d9c67d97d6f 347 c0 = *(py--);
emh203 0:3d9c67d97d6f 348
emh203 0:3d9c67d97d6f 349 /* Read x[6] sample */
emh203 0:3d9c67d97d6f 350 x2 = *(px++);
emh203 0:3d9c67d97d6f 351
emh203 0:3d9c67d97d6f 352 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 353 /* acc0 += x[3] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 354 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
emh203 0:3d9c67d97d6f 355 /* acc1 += x[4] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 356 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
emh203 0:3d9c67d97d6f 357 /* acc2 += x[5] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 358 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
emh203 0:3d9c67d97d6f 359 /* acc3 += x[6] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 360 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
emh203 0:3d9c67d97d6f 361
emh203 0:3d9c67d97d6f 362
emh203 0:3d9c67d97d6f 363 } while(--k);
emh203 0:3d9c67d97d6f 364
emh203 0:3d9c67d97d6f 365 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 366 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 367 k = srcBLen % 0x4u;
emh203 0:3d9c67d97d6f 368
emh203 0:3d9c67d97d6f 369 while(k > 0u)
emh203 0:3d9c67d97d6f 370 {
emh203 0:3d9c67d97d6f 371 /* Read y[srcBLen - 5] sample */
emh203 0:3d9c67d97d6f 372 c0 = *(py--);
emh203 0:3d9c67d97d6f 373
emh203 0:3d9c67d97d6f 374 /* Read x[7] sample */
emh203 0:3d9c67d97d6f 375 x3 = *(px++);
emh203 0:3d9c67d97d6f 376
emh203 0:3d9c67d97d6f 377 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 378 /* acc0 += x[4] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 379 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
emh203 0:3d9c67d97d6f 380 /* acc1 += x[5] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 381 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
emh203 0:3d9c67d97d6f 382 /* acc2 += x[6] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 383 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
emh203 0:3d9c67d97d6f 384 /* acc3 += x[7] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 385 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
emh203 0:3d9c67d97d6f 386
emh203 0:3d9c67d97d6f 387 /* Reuse the present samples for the next MAC */
emh203 0:3d9c67d97d6f 388 x0 = x1;
emh203 0:3d9c67d97d6f 389 x1 = x2;
emh203 0:3d9c67d97d6f 390 x2 = x3;
emh203 0:3d9c67d97d6f 391
emh203 0:3d9c67d97d6f 392 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 393 k--;
emh203 0:3d9c67d97d6f 394 }
emh203 0:3d9c67d97d6f 395
emh203 0:3d9c67d97d6f 396 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 397 *pOut++ = (q31_t) (acc0 << 1);
emh203 0:3d9c67d97d6f 398 *pOut++ = (q31_t) (acc1 << 1);
emh203 0:3d9c67d97d6f 399 *pOut++ = (q31_t) (acc2 << 1);
emh203 0:3d9c67d97d6f 400 *pOut++ = (q31_t) (acc3 << 1);
emh203 0:3d9c67d97d6f 401
emh203 0:3d9c67d97d6f 402 /* Increment the pointer pIn1 index, count by 4 */
emh203 0:3d9c67d97d6f 403 count += 4u;
emh203 0:3d9c67d97d6f 404
emh203 0:3d9c67d97d6f 405 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 406 px = pIn1 + count;
emh203 0:3d9c67d97d6f 407 py = pSrc2;
emh203 0:3d9c67d97d6f 408
emh203 0:3d9c67d97d6f 409 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 410 blkCnt--;
emh203 0:3d9c67d97d6f 411 }
emh203 0:3d9c67d97d6f 412
emh203 0:3d9c67d97d6f 413 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emh203 0:3d9c67d97d6f 414 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 415 blkCnt = (uint32_t) blockSize2 % 0x4u;
emh203 0:3d9c67d97d6f 416
emh203 0:3d9c67d97d6f 417 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 418 {
emh203 0:3d9c67d97d6f 419 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 420 sum = 0;
emh203 0:3d9c67d97d6f 421
emh203 0:3d9c67d97d6f 422 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 423 k = srcBLen >> 2u;
emh203 0:3d9c67d97d6f 424
emh203 0:3d9c67d97d6f 425 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 426 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 427 while(k > 0u)
emh203 0:3d9c67d97d6f 428 {
emh203 0:3d9c67d97d6f 429 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 430 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 431 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 432 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 433 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 434 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 435 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 436 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 437 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 438
emh203 0:3d9c67d97d6f 439 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 440 k--;
emh203 0:3d9c67d97d6f 441 }
emh203 0:3d9c67d97d6f 442
emh203 0:3d9c67d97d6f 443 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 444 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 445 k = srcBLen % 0x4u;
emh203 0:3d9c67d97d6f 446
emh203 0:3d9c67d97d6f 447 while(k > 0u)
emh203 0:3d9c67d97d6f 448 {
emh203 0:3d9c67d97d6f 449 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 450 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 451 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 452
emh203 0:3d9c67d97d6f 453 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 454 k--;
emh203 0:3d9c67d97d6f 455 }
emh203 0:3d9c67d97d6f 456
emh203 0:3d9c67d97d6f 457 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 458 *pOut++ = sum << 1;
emh203 0:3d9c67d97d6f 459
emh203 0:3d9c67d97d6f 460 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 461 count++;
emh203 0:3d9c67d97d6f 462
emh203 0:3d9c67d97d6f 463 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 464 px = pIn1 + count;
emh203 0:3d9c67d97d6f 465 py = pSrc2;
emh203 0:3d9c67d97d6f 466
emh203 0:3d9c67d97d6f 467 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 468 blkCnt--;
emh203 0:3d9c67d97d6f 469 }
emh203 0:3d9c67d97d6f 470 }
emh203 0:3d9c67d97d6f 471 else
emh203 0:3d9c67d97d6f 472 {
emh203 0:3d9c67d97d6f 473 /* If the srcBLen is not a multiple of 4,
emh203 0:3d9c67d97d6f 474 * the blockSize2 loop cannot be unrolled by 4 */
emh203 0:3d9c67d97d6f 475 blkCnt = (uint32_t) blockSize2;
emh203 0:3d9c67d97d6f 476
emh203 0:3d9c67d97d6f 477 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 478 {
emh203 0:3d9c67d97d6f 479 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 480 sum = 0;
emh203 0:3d9c67d97d6f 481
emh203 0:3d9c67d97d6f 482 /* srcBLen number of MACS should be performed */
emh203 0:3d9c67d97d6f 483 k = srcBLen;
emh203 0:3d9c67d97d6f 484
emh203 0:3d9c67d97d6f 485 while(k > 0u)
emh203 0:3d9c67d97d6f 486 {
emh203 0:3d9c67d97d6f 487 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 488 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 489 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 490
emh203 0:3d9c67d97d6f 491 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 492 k--;
emh203 0:3d9c67d97d6f 493 }
emh203 0:3d9c67d97d6f 494
emh203 0:3d9c67d97d6f 495 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 496 *pOut++ = sum << 1;
emh203 0:3d9c67d97d6f 497
emh203 0:3d9c67d97d6f 498 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 499 count++;
emh203 0:3d9c67d97d6f 500
emh203 0:3d9c67d97d6f 501 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 502 px = pIn1 + count;
emh203 0:3d9c67d97d6f 503 py = pSrc2;
emh203 0:3d9c67d97d6f 504
emh203 0:3d9c67d97d6f 505 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 506 blkCnt--;
emh203 0:3d9c67d97d6f 507 }
emh203 0:3d9c67d97d6f 508 }
emh203 0:3d9c67d97d6f 509
emh203 0:3d9c67d97d6f 510
emh203 0:3d9c67d97d6f 511 /* --------------------------
emh203 0:3d9c67d97d6f 512 * Initializations of stage3
emh203 0:3d9c67d97d6f 513 * -------------------------*/
emh203 0:3d9c67d97d6f 514
emh203 0:3d9c67d97d6f 515 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
emh203 0:3d9c67d97d6f 516 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
emh203 0:3d9c67d97d6f 517 * ....
emh203 0:3d9c67d97d6f 518 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
emh203 0:3d9c67d97d6f 519 * sum += x[srcALen-1] * y[srcBLen-1]
emh203 0:3d9c67d97d6f 520 */
emh203 0:3d9c67d97d6f 521
emh203 0:3d9c67d97d6f 522 /* In this stage the MAC operations are decreased by 1 for every iteration.
emh203 0:3d9c67d97d6f 523 The count variable holds the number of MAC operations performed */
emh203 0:3d9c67d97d6f 524 count = srcBLen - 1u;
emh203 0:3d9c67d97d6f 525
emh203 0:3d9c67d97d6f 526 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 527 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
emh203 0:3d9c67d97d6f 528 px = pSrc1;
emh203 0:3d9c67d97d6f 529
emh203 0:3d9c67d97d6f 530 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 531 pSrc2 = pIn2 + (srcBLen - 1u);
emh203 0:3d9c67d97d6f 532 py = pSrc2;
emh203 0:3d9c67d97d6f 533
emh203 0:3d9c67d97d6f 534 /* -------------------
emh203 0:3d9c67d97d6f 535 * Stage3 process
emh203 0:3d9c67d97d6f 536 * ------------------*/
emh203 0:3d9c67d97d6f 537
emh203 0:3d9c67d97d6f 538 while(blockSize3 > 0)
emh203 0:3d9c67d97d6f 539 {
emh203 0:3d9c67d97d6f 540 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 541 sum = 0;
emh203 0:3d9c67d97d6f 542
emh203 0:3d9c67d97d6f 543 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 544 k = count >> 2u;
emh203 0:3d9c67d97d6f 545
emh203 0:3d9c67d97d6f 546 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 547 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 548 while(k > 0u)
emh203 0:3d9c67d97d6f 549 {
emh203 0:3d9c67d97d6f 550 /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 551 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 552 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 553
emh203 0:3d9c67d97d6f 554 /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 555 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 556 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 557
emh203 0:3d9c67d97d6f 558 /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 559 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 560 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 561
emh203 0:3d9c67d97d6f 562 /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 563 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 564 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 565
emh203 0:3d9c67d97d6f 566 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 567 k--;
emh203 0:3d9c67d97d6f 568 }
emh203 0:3d9c67d97d6f 569
emh203 0:3d9c67d97d6f 570 /* If the count is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 571 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 572 k = count % 0x4u;
emh203 0:3d9c67d97d6f 573
emh203 0:3d9c67d97d6f 574 while(k > 0u)
emh203 0:3d9c67d97d6f 575 {
emh203 0:3d9c67d97d6f 576 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 577 /* sum += x[srcALen-1] * y[srcBLen-1] */
emh203 0:3d9c67d97d6f 578 sum = (q31_t) ((((q63_t) sum << 32) +
emh203 0:3d9c67d97d6f 579 ((q63_t) * px++ * (*py--))) >> 32);
emh203 0:3d9c67d97d6f 580
emh203 0:3d9c67d97d6f 581 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 582 k--;
emh203 0:3d9c67d97d6f 583 }
emh203 0:3d9c67d97d6f 584
emh203 0:3d9c67d97d6f 585 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 586 *pOut++ = sum << 1;
emh203 0:3d9c67d97d6f 587
emh203 0:3d9c67d97d6f 588 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 589 px = ++pSrc1;
emh203 0:3d9c67d97d6f 590 py = pSrc2;
emh203 0:3d9c67d97d6f 591
emh203 0:3d9c67d97d6f 592 /* Decrement the MAC count */
emh203 0:3d9c67d97d6f 593 count--;
emh203 0:3d9c67d97d6f 594
emh203 0:3d9c67d97d6f 595 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 596 blockSize3--;
emh203 0:3d9c67d97d6f 597
emh203 0:3d9c67d97d6f 598 }
emh203 0:3d9c67d97d6f 599
emh203 0:3d9c67d97d6f 600 /* set status as ARM_MATH_SUCCESS */
emh203 0:3d9c67d97d6f 601 status = ARM_MATH_SUCCESS;
emh203 0:3d9c67d97d6f 602 }
emh203 0:3d9c67d97d6f 603
emh203 0:3d9c67d97d6f 604 /* Return to application */
emh203 0:3d9c67d97d6f 605 return (status);
emh203 0:3d9c67d97d6f 606
emh203 0:3d9c67d97d6f 607 }
emh203 0:3d9c67d97d6f 608
emh203 0:3d9c67d97d6f 609 /**
emh203 0:3d9c67d97d6f 610 * @} end of PartialConv group
emh203 0:3d9c67d97d6f 611 */