V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_conv_partial_f32.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Partial convolution of floating-point sequences.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * -------------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40
emh203 0:3d9c67d97d6f 41 #include "arm_math.h"
emh203 0:3d9c67d97d6f 42
emh203 0:3d9c67d97d6f 43 /**
emh203 0:3d9c67d97d6f 44 * @ingroup groupFilters
emh203 0:3d9c67d97d6f 45 */
emh203 0:3d9c67d97d6f 46
emh203 0:3d9c67d97d6f 47 /**
emh203 0:3d9c67d97d6f 48 * @defgroup PartialConv Partial Convolution
emh203 0:3d9c67d97d6f 49 *
emh203 0:3d9c67d97d6f 50 * Partial Convolution is equivalent to Convolution except that a subset of the output samples is generated.
emh203 0:3d9c67d97d6f 51 * Each function has two additional arguments.
emh203 0:3d9c67d97d6f 52 * <code>firstIndex</code> specifies the starting index of the subset of output samples.
emh203 0:3d9c67d97d6f 53 * <code>numPoints</code> is the number of output samples to compute.
emh203 0:3d9c67d97d6f 54 * The function computes the output in the range
emh203 0:3d9c67d97d6f 55 * <code>[firstIndex, ..., firstIndex+numPoints-1]</code>.
emh203 0:3d9c67d97d6f 56 * The output array <code>pDst</code> contains <code>numPoints</code> values.
emh203 0:3d9c67d97d6f 57 *
emh203 0:3d9c67d97d6f 58 * The allowable range of output indices is [0 srcALen+srcBLen-2].
emh203 0:3d9c67d97d6f 59 * If the requested subset does not fall in this range then the functions return ARM_MATH_ARGUMENT_ERROR.
emh203 0:3d9c67d97d6f 60 * Otherwise the functions return ARM_MATH_SUCCESS.
emh203 0:3d9c67d97d6f 61 * \note Refer arm_conv_f32() for details on fixed point behavior.
emh203 0:3d9c67d97d6f 62 *
emh203 0:3d9c67d97d6f 63 *
emh203 0:3d9c67d97d6f 64 * <b>Fast Versions</b>
emh203 0:3d9c67d97d6f 65 *
emh203 0:3d9c67d97d6f 66 * \par
emh203 0:3d9c67d97d6f 67 * Fast versions are supported for Q31 and Q15 of partial convolution. Cycles for Fast versions are less compared to Q31 and Q15 of partial conv and the design requires
emh203 0:3d9c67d97d6f 68 * the input signals should be scaled down to avoid intermediate overflows.
emh203 0:3d9c67d97d6f 69 *
emh203 0:3d9c67d97d6f 70 *
emh203 0:3d9c67d97d6f 71 * <b>Opt Versions</b>
emh203 0:3d9c67d97d6f 72 *
emh203 0:3d9c67d97d6f 73 * \par
emh203 0:3d9c67d97d6f 74 * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
emh203 0:3d9c67d97d6f 75 * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of partial convolution
emh203 0:3d9c67d97d6f 76 */
emh203 0:3d9c67d97d6f 77
emh203 0:3d9c67d97d6f 78 /**
emh203 0:3d9c67d97d6f 79 * @addtogroup PartialConv
emh203 0:3d9c67d97d6f 80 * @{
emh203 0:3d9c67d97d6f 81 */
emh203 0:3d9c67d97d6f 82
emh203 0:3d9c67d97d6f 83 /**
emh203 0:3d9c67d97d6f 84 * @brief Partial convolution of floating-point sequences.
emh203 0:3d9c67d97d6f 85 * @param[in] *pSrcA points to the first input sequence.
emh203 0:3d9c67d97d6f 86 * @param[in] srcALen length of the first input sequence.
emh203 0:3d9c67d97d6f 87 * @param[in] *pSrcB points to the second input sequence.
emh203 0:3d9c67d97d6f 88 * @param[in] srcBLen length of the second input sequence.
emh203 0:3d9c67d97d6f 89 * @param[out] *pDst points to the location where the output result is written.
emh203 0:3d9c67d97d6f 90 * @param[in] firstIndex is the first output sample to start with.
emh203 0:3d9c67d97d6f 91 * @param[in] numPoints is the number of output points to be computed.
emh203 0:3d9c67d97d6f 92 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
emh203 0:3d9c67d97d6f 93 */
emh203 0:3d9c67d97d6f 94
emh203 0:3d9c67d97d6f 95 arm_status arm_conv_partial_f32(
emh203 0:3d9c67d97d6f 96 float32_t * pSrcA,
emh203 0:3d9c67d97d6f 97 uint32_t srcALen,
emh203 0:3d9c67d97d6f 98 float32_t * pSrcB,
emh203 0:3d9c67d97d6f 99 uint32_t srcBLen,
emh203 0:3d9c67d97d6f 100 float32_t * pDst,
emh203 0:3d9c67d97d6f 101 uint32_t firstIndex,
emh203 0:3d9c67d97d6f 102 uint32_t numPoints)
emh203 0:3d9c67d97d6f 103 {
emh203 0:3d9c67d97d6f 104
emh203 0:3d9c67d97d6f 105
emh203 0:3d9c67d97d6f 106 #ifndef ARM_MATH_CM0_FAMILY
emh203 0:3d9c67d97d6f 107
emh203 0:3d9c67d97d6f 108 /* Run the below code for Cortex-M4 and Cortex-M3 */
emh203 0:3d9c67d97d6f 109
emh203 0:3d9c67d97d6f 110 float32_t *pIn1 = pSrcA; /* inputA pointer */
emh203 0:3d9c67d97d6f 111 float32_t *pIn2 = pSrcB; /* inputB pointer */
emh203 0:3d9c67d97d6f 112 float32_t *pOut = pDst; /* output pointer */
emh203 0:3d9c67d97d6f 113 float32_t *px; /* Intermediate inputA pointer */
emh203 0:3d9c67d97d6f 114 float32_t *py; /* Intermediate inputB pointer */
emh203 0:3d9c67d97d6f 115 float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
emh203 0:3d9c67d97d6f 116 float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
emh203 0:3d9c67d97d6f 117 float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
emh203 0:3d9c67d97d6f 118 uint32_t j, k, count = 0u, blkCnt, check;
emh203 0:3d9c67d97d6f 119 int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
emh203 0:3d9c67d97d6f 120 arm_status status; /* status of Partial convolution */
emh203 0:3d9c67d97d6f 121
emh203 0:3d9c67d97d6f 122
emh203 0:3d9c67d97d6f 123 /* Check for range of output samples to be calculated */
emh203 0:3d9c67d97d6f 124 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
emh203 0:3d9c67d97d6f 125 {
emh203 0:3d9c67d97d6f 126 /* Set status as ARM_MATH_ARGUMENT_ERROR */
emh203 0:3d9c67d97d6f 127 status = ARM_MATH_ARGUMENT_ERROR;
emh203 0:3d9c67d97d6f 128 }
emh203 0:3d9c67d97d6f 129 else
emh203 0:3d9c67d97d6f 130 {
emh203 0:3d9c67d97d6f 131
emh203 0:3d9c67d97d6f 132 /* The algorithm implementation is based on the lengths of the inputs. */
emh203 0:3d9c67d97d6f 133 /* srcB is always made to slide across srcA. */
emh203 0:3d9c67d97d6f 134 /* So srcBLen is always considered as shorter or equal to srcALen */
emh203 0:3d9c67d97d6f 135 if(srcALen >= srcBLen)
emh203 0:3d9c67d97d6f 136 {
emh203 0:3d9c67d97d6f 137 /* Initialization of inputA pointer */
emh203 0:3d9c67d97d6f 138 pIn1 = pSrcA;
emh203 0:3d9c67d97d6f 139
emh203 0:3d9c67d97d6f 140 /* Initialization of inputB pointer */
emh203 0:3d9c67d97d6f 141 pIn2 = pSrcB;
emh203 0:3d9c67d97d6f 142 }
emh203 0:3d9c67d97d6f 143 else
emh203 0:3d9c67d97d6f 144 {
emh203 0:3d9c67d97d6f 145 /* Initialization of inputA pointer */
emh203 0:3d9c67d97d6f 146 pIn1 = pSrcB;
emh203 0:3d9c67d97d6f 147
emh203 0:3d9c67d97d6f 148 /* Initialization of inputB pointer */
emh203 0:3d9c67d97d6f 149 pIn2 = pSrcA;
emh203 0:3d9c67d97d6f 150
emh203 0:3d9c67d97d6f 151 /* srcBLen is always considered as shorter or equal to srcALen */
emh203 0:3d9c67d97d6f 152 j = srcBLen;
emh203 0:3d9c67d97d6f 153 srcBLen = srcALen;
emh203 0:3d9c67d97d6f 154 srcALen = j;
emh203 0:3d9c67d97d6f 155 }
emh203 0:3d9c67d97d6f 156
emh203 0:3d9c67d97d6f 157 /* Conditions to check which loopCounter holds
emh203 0:3d9c67d97d6f 158 * the first and last indices of the output samples to be calculated. */
emh203 0:3d9c67d97d6f 159 check = firstIndex + numPoints;
emh203 0:3d9c67d97d6f 160 blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
emh203 0:3d9c67d97d6f 161 blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
emh203 0:3d9c67d97d6f 162 blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex;
emh203 0:3d9c67d97d6f 163 blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
emh203 0:3d9c67d97d6f 164 (int32_t) numPoints) : 0;
emh203 0:3d9c67d97d6f 165 blockSize2 = ((int32_t) check - blockSize3) -
emh203 0:3d9c67d97d6f 166 (blockSize1 + (int32_t) firstIndex);
emh203 0:3d9c67d97d6f 167 blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
emh203 0:3d9c67d97d6f 168
emh203 0:3d9c67d97d6f 169 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
emh203 0:3d9c67d97d6f 170 /* The function is internally
emh203 0:3d9c67d97d6f 171 * divided into three stages according to the number of multiplications that has to be
emh203 0:3d9c67d97d6f 172 * taken place between inputA samples and inputB samples. In the first stage of the
emh203 0:3d9c67d97d6f 173 * algorithm, the multiplications increase by one for every iteration.
emh203 0:3d9c67d97d6f 174 * In the second stage of the algorithm, srcBLen number of multiplications are done.
emh203 0:3d9c67d97d6f 175 * In the third stage of the algorithm, the multiplications decrease by one
emh203 0:3d9c67d97d6f 176 * for every iteration. */
emh203 0:3d9c67d97d6f 177
emh203 0:3d9c67d97d6f 178 /* Set the output pointer to point to the firstIndex
emh203 0:3d9c67d97d6f 179 * of the output sample to be calculated. */
emh203 0:3d9c67d97d6f 180 pOut = pDst + firstIndex;
emh203 0:3d9c67d97d6f 181
emh203 0:3d9c67d97d6f 182 /* --------------------------
emh203 0:3d9c67d97d6f 183 * Initializations of stage1
emh203 0:3d9c67d97d6f 184 * -------------------------*/
emh203 0:3d9c67d97d6f 185
emh203 0:3d9c67d97d6f 186 /* sum = x[0] * y[0]
emh203 0:3d9c67d97d6f 187 * sum = x[0] * y[1] + x[1] * y[0]
emh203 0:3d9c67d97d6f 188 * ....
emh203 0:3d9c67d97d6f 189 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
emh203 0:3d9c67d97d6f 190 */
emh203 0:3d9c67d97d6f 191
emh203 0:3d9c67d97d6f 192 /* In this stage the MAC operations are increased by 1 for every iteration.
emh203 0:3d9c67d97d6f 193 The count variable holds the number of MAC operations performed.
emh203 0:3d9c67d97d6f 194 Since the partial convolution starts from from firstIndex
emh203 0:3d9c67d97d6f 195 Number of Macs to be performed is firstIndex + 1 */
emh203 0:3d9c67d97d6f 196 count = 1u + firstIndex;
emh203 0:3d9c67d97d6f 197
emh203 0:3d9c67d97d6f 198 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 199 px = pIn1;
emh203 0:3d9c67d97d6f 200
emh203 0:3d9c67d97d6f 201 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 202 pSrc1 = pIn2 + firstIndex;
emh203 0:3d9c67d97d6f 203 py = pSrc1;
emh203 0:3d9c67d97d6f 204
emh203 0:3d9c67d97d6f 205 /* ------------------------
emh203 0:3d9c67d97d6f 206 * Stage1 process
emh203 0:3d9c67d97d6f 207 * ----------------------*/
emh203 0:3d9c67d97d6f 208
emh203 0:3d9c67d97d6f 209 /* The first stage starts here */
emh203 0:3d9c67d97d6f 210 while(blockSize1 > 0)
emh203 0:3d9c67d97d6f 211 {
emh203 0:3d9c67d97d6f 212 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 213 sum = 0.0f;
emh203 0:3d9c67d97d6f 214
emh203 0:3d9c67d97d6f 215 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 216 k = count >> 2u;
emh203 0:3d9c67d97d6f 217
emh203 0:3d9c67d97d6f 218 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 219 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 220 while(k > 0u)
emh203 0:3d9c67d97d6f 221 {
emh203 0:3d9c67d97d6f 222 /* x[0] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 223 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 224
emh203 0:3d9c67d97d6f 225 /* x[1] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 226 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 227
emh203 0:3d9c67d97d6f 228 /* x[2] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 229 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 230
emh203 0:3d9c67d97d6f 231 /* x[3] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 232 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 233
emh203 0:3d9c67d97d6f 234 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 235 k--;
emh203 0:3d9c67d97d6f 236 }
emh203 0:3d9c67d97d6f 237
emh203 0:3d9c67d97d6f 238 /* If the count is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 239 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 240 k = count % 0x4u;
emh203 0:3d9c67d97d6f 241
emh203 0:3d9c67d97d6f 242 while(k > 0u)
emh203 0:3d9c67d97d6f 243 {
emh203 0:3d9c67d97d6f 244 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 245 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 246
emh203 0:3d9c67d97d6f 247 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 248 k--;
emh203 0:3d9c67d97d6f 249 }
emh203 0:3d9c67d97d6f 250
emh203 0:3d9c67d97d6f 251 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 252 *pOut++ = sum;
emh203 0:3d9c67d97d6f 253
emh203 0:3d9c67d97d6f 254 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 255 py = ++pSrc1;
emh203 0:3d9c67d97d6f 256 px = pIn1;
emh203 0:3d9c67d97d6f 257
emh203 0:3d9c67d97d6f 258 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 259 count++;
emh203 0:3d9c67d97d6f 260
emh203 0:3d9c67d97d6f 261 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 262 blockSize1--;
emh203 0:3d9c67d97d6f 263 }
emh203 0:3d9c67d97d6f 264
emh203 0:3d9c67d97d6f 265 /* --------------------------
emh203 0:3d9c67d97d6f 266 * Initializations of stage2
emh203 0:3d9c67d97d6f 267 * ------------------------*/
emh203 0:3d9c67d97d6f 268
emh203 0:3d9c67d97d6f 269 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
emh203 0:3d9c67d97d6f 270 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
emh203 0:3d9c67d97d6f 271 * ....
emh203 0:3d9c67d97d6f 272 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
emh203 0:3d9c67d97d6f 273 */
emh203 0:3d9c67d97d6f 274
emh203 0:3d9c67d97d6f 275 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 276 if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
emh203 0:3d9c67d97d6f 277 {
emh203 0:3d9c67d97d6f 278 px = pIn1 + firstIndex - srcBLen + 1;
emh203 0:3d9c67d97d6f 279 }
emh203 0:3d9c67d97d6f 280 else
emh203 0:3d9c67d97d6f 281 {
emh203 0:3d9c67d97d6f 282 px = pIn1;
emh203 0:3d9c67d97d6f 283 }
emh203 0:3d9c67d97d6f 284
emh203 0:3d9c67d97d6f 285 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 286 pSrc2 = pIn2 + (srcBLen - 1u);
emh203 0:3d9c67d97d6f 287 py = pSrc2;
emh203 0:3d9c67d97d6f 288
emh203 0:3d9c67d97d6f 289 /* count is index by which the pointer pIn1 to be incremented */
emh203 0:3d9c67d97d6f 290 count = 0u;
emh203 0:3d9c67d97d6f 291
emh203 0:3d9c67d97d6f 292 /* -------------------
emh203 0:3d9c67d97d6f 293 * Stage2 process
emh203 0:3d9c67d97d6f 294 * ------------------*/
emh203 0:3d9c67d97d6f 295
emh203 0:3d9c67d97d6f 296 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emh203 0:3d9c67d97d6f 297 * So, to loop unroll over blockSize2,
emh203 0:3d9c67d97d6f 298 * srcBLen should be greater than or equal to 4 */
emh203 0:3d9c67d97d6f 299 if(srcBLen >= 4u)
emh203 0:3d9c67d97d6f 300 {
emh203 0:3d9c67d97d6f 301 /* Loop unroll over blockSize2, by 4 */
emh203 0:3d9c67d97d6f 302 blkCnt = ((uint32_t) blockSize2 >> 2u);
emh203 0:3d9c67d97d6f 303
emh203 0:3d9c67d97d6f 304 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 305 {
emh203 0:3d9c67d97d6f 306 /* Set all accumulators to zero */
emh203 0:3d9c67d97d6f 307 acc0 = 0.0f;
emh203 0:3d9c67d97d6f 308 acc1 = 0.0f;
emh203 0:3d9c67d97d6f 309 acc2 = 0.0f;
emh203 0:3d9c67d97d6f 310 acc3 = 0.0f;
emh203 0:3d9c67d97d6f 311
emh203 0:3d9c67d97d6f 312 /* read x[0], x[1], x[2] samples */
emh203 0:3d9c67d97d6f 313 x0 = *(px++);
emh203 0:3d9c67d97d6f 314 x1 = *(px++);
emh203 0:3d9c67d97d6f 315 x2 = *(px++);
emh203 0:3d9c67d97d6f 316
emh203 0:3d9c67d97d6f 317 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 318 k = srcBLen >> 2u;
emh203 0:3d9c67d97d6f 319
emh203 0:3d9c67d97d6f 320 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 321 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 322 do
emh203 0:3d9c67d97d6f 323 {
emh203 0:3d9c67d97d6f 324 /* Read y[srcBLen - 1] sample */
emh203 0:3d9c67d97d6f 325 c0 = *(py--);
emh203 0:3d9c67d97d6f 326
emh203 0:3d9c67d97d6f 327 /* Read x[3] sample */
emh203 0:3d9c67d97d6f 328 x3 = *(px++);
emh203 0:3d9c67d97d6f 329
emh203 0:3d9c67d97d6f 330 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 331 /* acc0 += x[0] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 332 acc0 += x0 * c0;
emh203 0:3d9c67d97d6f 333
emh203 0:3d9c67d97d6f 334 /* acc1 += x[1] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 335 acc1 += x1 * c0;
emh203 0:3d9c67d97d6f 336
emh203 0:3d9c67d97d6f 337 /* acc2 += x[2] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 338 acc2 += x2 * c0;
emh203 0:3d9c67d97d6f 339
emh203 0:3d9c67d97d6f 340 /* acc3 += x[3] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 341 acc3 += x3 * c0;
emh203 0:3d9c67d97d6f 342
emh203 0:3d9c67d97d6f 343 /* Read y[srcBLen - 2] sample */
emh203 0:3d9c67d97d6f 344 c0 = *(py--);
emh203 0:3d9c67d97d6f 345
emh203 0:3d9c67d97d6f 346 /* Read x[4] sample */
emh203 0:3d9c67d97d6f 347 x0 = *(px++);
emh203 0:3d9c67d97d6f 348
emh203 0:3d9c67d97d6f 349 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 350 /* acc0 += x[1] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 351 acc0 += x1 * c0;
emh203 0:3d9c67d97d6f 352 /* acc1 += x[2] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 353 acc1 += x2 * c0;
emh203 0:3d9c67d97d6f 354 /* acc2 += x[3] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 355 acc2 += x3 * c0;
emh203 0:3d9c67d97d6f 356 /* acc3 += x[4] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 357 acc3 += x0 * c0;
emh203 0:3d9c67d97d6f 358
emh203 0:3d9c67d97d6f 359 /* Read y[srcBLen - 3] sample */
emh203 0:3d9c67d97d6f 360 c0 = *(py--);
emh203 0:3d9c67d97d6f 361
emh203 0:3d9c67d97d6f 362 /* Read x[5] sample */
emh203 0:3d9c67d97d6f 363 x1 = *(px++);
emh203 0:3d9c67d97d6f 364
emh203 0:3d9c67d97d6f 365 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 366 /* acc0 += x[2] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 367 acc0 += x2 * c0;
emh203 0:3d9c67d97d6f 368 /* acc1 += x[3] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 369 acc1 += x3 * c0;
emh203 0:3d9c67d97d6f 370 /* acc2 += x[4] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 371 acc2 += x0 * c0;
emh203 0:3d9c67d97d6f 372 /* acc3 += x[5] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 373 acc3 += x1 * c0;
emh203 0:3d9c67d97d6f 374
emh203 0:3d9c67d97d6f 375 /* Read y[srcBLen - 4] sample */
emh203 0:3d9c67d97d6f 376 c0 = *(py--);
emh203 0:3d9c67d97d6f 377
emh203 0:3d9c67d97d6f 378 /* Read x[6] sample */
emh203 0:3d9c67d97d6f 379 x2 = *(px++);
emh203 0:3d9c67d97d6f 380
emh203 0:3d9c67d97d6f 381 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 382 /* acc0 += x[3] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 383 acc0 += x3 * c0;
emh203 0:3d9c67d97d6f 384 /* acc1 += x[4] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 385 acc1 += x0 * c0;
emh203 0:3d9c67d97d6f 386 /* acc2 += x[5] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 387 acc2 += x1 * c0;
emh203 0:3d9c67d97d6f 388 /* acc3 += x[6] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 389 acc3 += x2 * c0;
emh203 0:3d9c67d97d6f 390
emh203 0:3d9c67d97d6f 391
emh203 0:3d9c67d97d6f 392 } while(--k);
emh203 0:3d9c67d97d6f 393
emh203 0:3d9c67d97d6f 394 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 395 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 396 k = srcBLen % 0x4u;
emh203 0:3d9c67d97d6f 397
emh203 0:3d9c67d97d6f 398 while(k > 0u)
emh203 0:3d9c67d97d6f 399 {
emh203 0:3d9c67d97d6f 400 /* Read y[srcBLen - 5] sample */
emh203 0:3d9c67d97d6f 401 c0 = *(py--);
emh203 0:3d9c67d97d6f 402
emh203 0:3d9c67d97d6f 403 /* Read x[7] sample */
emh203 0:3d9c67d97d6f 404 x3 = *(px++);
emh203 0:3d9c67d97d6f 405
emh203 0:3d9c67d97d6f 406 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 407 /* acc0 += x[4] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 408 acc0 += x0 * c0;
emh203 0:3d9c67d97d6f 409 /* acc1 += x[5] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 410 acc1 += x1 * c0;
emh203 0:3d9c67d97d6f 411 /* acc2 += x[6] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 412 acc2 += x2 * c0;
emh203 0:3d9c67d97d6f 413 /* acc3 += x[7] * y[srcBLen - 5] */
emh203 0:3d9c67d97d6f 414 acc3 += x3 * c0;
emh203 0:3d9c67d97d6f 415
emh203 0:3d9c67d97d6f 416 /* Reuse the present samples for the next MAC */
emh203 0:3d9c67d97d6f 417 x0 = x1;
emh203 0:3d9c67d97d6f 418 x1 = x2;
emh203 0:3d9c67d97d6f 419 x2 = x3;
emh203 0:3d9c67d97d6f 420
emh203 0:3d9c67d97d6f 421 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 422 k--;
emh203 0:3d9c67d97d6f 423 }
emh203 0:3d9c67d97d6f 424
emh203 0:3d9c67d97d6f 425 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 426 *pOut++ = acc0;
emh203 0:3d9c67d97d6f 427 *pOut++ = acc1;
emh203 0:3d9c67d97d6f 428 *pOut++ = acc2;
emh203 0:3d9c67d97d6f 429 *pOut++ = acc3;
emh203 0:3d9c67d97d6f 430
emh203 0:3d9c67d97d6f 431 /* Increment the pointer pIn1 index, count by 1 */
emh203 0:3d9c67d97d6f 432 count += 4u;
emh203 0:3d9c67d97d6f 433
emh203 0:3d9c67d97d6f 434 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 435 px = pIn1 + count;
emh203 0:3d9c67d97d6f 436 py = pSrc2;
emh203 0:3d9c67d97d6f 437
emh203 0:3d9c67d97d6f 438 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 439 blkCnt--;
emh203 0:3d9c67d97d6f 440 }
emh203 0:3d9c67d97d6f 441
emh203 0:3d9c67d97d6f 442 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emh203 0:3d9c67d97d6f 443 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 444 blkCnt = (uint32_t) blockSize2 % 0x4u;
emh203 0:3d9c67d97d6f 445
emh203 0:3d9c67d97d6f 446 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 447 {
emh203 0:3d9c67d97d6f 448 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 449 sum = 0.0f;
emh203 0:3d9c67d97d6f 450
emh203 0:3d9c67d97d6f 451 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 452 k = srcBLen >> 2u;
emh203 0:3d9c67d97d6f 453
emh203 0:3d9c67d97d6f 454 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 455 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 456 while(k > 0u)
emh203 0:3d9c67d97d6f 457 {
emh203 0:3d9c67d97d6f 458 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 459 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 460 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 461 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 462 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 463
emh203 0:3d9c67d97d6f 464 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 465 k--;
emh203 0:3d9c67d97d6f 466 }
emh203 0:3d9c67d97d6f 467
emh203 0:3d9c67d97d6f 468 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 469 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 470 k = srcBLen % 0x4u;
emh203 0:3d9c67d97d6f 471
emh203 0:3d9c67d97d6f 472 while(k > 0u)
emh203 0:3d9c67d97d6f 473 {
emh203 0:3d9c67d97d6f 474 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 475 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 476
emh203 0:3d9c67d97d6f 477 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 478 k--;
emh203 0:3d9c67d97d6f 479 }
emh203 0:3d9c67d97d6f 480
emh203 0:3d9c67d97d6f 481 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 482 *pOut++ = sum;
emh203 0:3d9c67d97d6f 483
emh203 0:3d9c67d97d6f 484 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 485 count++;
emh203 0:3d9c67d97d6f 486
emh203 0:3d9c67d97d6f 487 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 488 px = pIn1 + count;
emh203 0:3d9c67d97d6f 489 py = pSrc2;
emh203 0:3d9c67d97d6f 490
emh203 0:3d9c67d97d6f 491 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 492 blkCnt--;
emh203 0:3d9c67d97d6f 493 }
emh203 0:3d9c67d97d6f 494 }
emh203 0:3d9c67d97d6f 495 else
emh203 0:3d9c67d97d6f 496 {
emh203 0:3d9c67d97d6f 497 /* If the srcBLen is not a multiple of 4,
emh203 0:3d9c67d97d6f 498 * the blockSize2 loop cannot be unrolled by 4 */
emh203 0:3d9c67d97d6f 499 blkCnt = (uint32_t) blockSize2;
emh203 0:3d9c67d97d6f 500
emh203 0:3d9c67d97d6f 501 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 502 {
emh203 0:3d9c67d97d6f 503 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 504 sum = 0.0f;
emh203 0:3d9c67d97d6f 505
emh203 0:3d9c67d97d6f 506 /* srcBLen number of MACS should be performed */
emh203 0:3d9c67d97d6f 507 k = srcBLen;
emh203 0:3d9c67d97d6f 508
emh203 0:3d9c67d97d6f 509 while(k > 0u)
emh203 0:3d9c67d97d6f 510 {
emh203 0:3d9c67d97d6f 511 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 512 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 513
emh203 0:3d9c67d97d6f 514 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 515 k--;
emh203 0:3d9c67d97d6f 516 }
emh203 0:3d9c67d97d6f 517
emh203 0:3d9c67d97d6f 518 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 519 *pOut++ = sum;
emh203 0:3d9c67d97d6f 520
emh203 0:3d9c67d97d6f 521 /* Increment the MAC count */
emh203 0:3d9c67d97d6f 522 count++;
emh203 0:3d9c67d97d6f 523
emh203 0:3d9c67d97d6f 524 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 525 px = pIn1 + count;
emh203 0:3d9c67d97d6f 526 py = pSrc2;
emh203 0:3d9c67d97d6f 527
emh203 0:3d9c67d97d6f 528 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 529 blkCnt--;
emh203 0:3d9c67d97d6f 530 }
emh203 0:3d9c67d97d6f 531 }
emh203 0:3d9c67d97d6f 532
emh203 0:3d9c67d97d6f 533
emh203 0:3d9c67d97d6f 534 /* --------------------------
emh203 0:3d9c67d97d6f 535 * Initializations of stage3
emh203 0:3d9c67d97d6f 536 * -------------------------*/
emh203 0:3d9c67d97d6f 537
emh203 0:3d9c67d97d6f 538 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
emh203 0:3d9c67d97d6f 539 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
emh203 0:3d9c67d97d6f 540 * ....
emh203 0:3d9c67d97d6f 541 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
emh203 0:3d9c67d97d6f 542 * sum += x[srcALen-1] * y[srcBLen-1]
emh203 0:3d9c67d97d6f 543 */
emh203 0:3d9c67d97d6f 544
emh203 0:3d9c67d97d6f 545 /* In this stage the MAC operations are decreased by 1 for every iteration.
emh203 0:3d9c67d97d6f 546 The count variable holds the number of MAC operations performed */
emh203 0:3d9c67d97d6f 547 count = srcBLen - 1u;
emh203 0:3d9c67d97d6f 548
emh203 0:3d9c67d97d6f 549 /* Working pointer of inputA */
emh203 0:3d9c67d97d6f 550 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
emh203 0:3d9c67d97d6f 551 px = pSrc1;
emh203 0:3d9c67d97d6f 552
emh203 0:3d9c67d97d6f 553 /* Working pointer of inputB */
emh203 0:3d9c67d97d6f 554 pSrc2 = pIn2 + (srcBLen - 1u);
emh203 0:3d9c67d97d6f 555 py = pSrc2;
emh203 0:3d9c67d97d6f 556
emh203 0:3d9c67d97d6f 557 while(blockSize3 > 0)
emh203 0:3d9c67d97d6f 558 {
emh203 0:3d9c67d97d6f 559 /* Accumulator is made zero for every iteration */
emh203 0:3d9c67d97d6f 560 sum = 0.0f;
emh203 0:3d9c67d97d6f 561
emh203 0:3d9c67d97d6f 562 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emh203 0:3d9c67d97d6f 563 k = count >> 2u;
emh203 0:3d9c67d97d6f 564
emh203 0:3d9c67d97d6f 565 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emh203 0:3d9c67d97d6f 566 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 567 while(k > 0u)
emh203 0:3d9c67d97d6f 568 {
emh203 0:3d9c67d97d6f 569 /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
emh203 0:3d9c67d97d6f 570 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 571
emh203 0:3d9c67d97d6f 572 /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
emh203 0:3d9c67d97d6f 573 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 574
emh203 0:3d9c67d97d6f 575 /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
emh203 0:3d9c67d97d6f 576 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 577
emh203 0:3d9c67d97d6f 578 /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
emh203 0:3d9c67d97d6f 579 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 580
emh203 0:3d9c67d97d6f 581 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 582 k--;
emh203 0:3d9c67d97d6f 583 }
emh203 0:3d9c67d97d6f 584
emh203 0:3d9c67d97d6f 585 /* If the count is not a multiple of 4, compute any remaining MACs here.
emh203 0:3d9c67d97d6f 586 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 587 k = count % 0x4u;
emh203 0:3d9c67d97d6f 588
emh203 0:3d9c67d97d6f 589 while(k > 0u)
emh203 0:3d9c67d97d6f 590 {
emh203 0:3d9c67d97d6f 591 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 592 /* sum += x[srcALen-1] * y[srcBLen-1] */
emh203 0:3d9c67d97d6f 593 sum += *px++ * *py--;
emh203 0:3d9c67d97d6f 594
emh203 0:3d9c67d97d6f 595 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 596 k--;
emh203 0:3d9c67d97d6f 597 }
emh203 0:3d9c67d97d6f 598
emh203 0:3d9c67d97d6f 599 /* Store the result in the accumulator in the destination buffer. */
emh203 0:3d9c67d97d6f 600 *pOut++ = sum;
emh203 0:3d9c67d97d6f 601
emh203 0:3d9c67d97d6f 602 /* Update the inputA and inputB pointers for next MAC calculation */
emh203 0:3d9c67d97d6f 603 px = ++pSrc1;
emh203 0:3d9c67d97d6f 604 py = pSrc2;
emh203 0:3d9c67d97d6f 605
emh203 0:3d9c67d97d6f 606 /* Decrement the MAC count */
emh203 0:3d9c67d97d6f 607 count--;
emh203 0:3d9c67d97d6f 608
emh203 0:3d9c67d97d6f 609 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 610 blockSize3--;
emh203 0:3d9c67d97d6f 611
emh203 0:3d9c67d97d6f 612 }
emh203 0:3d9c67d97d6f 613
emh203 0:3d9c67d97d6f 614 /* set status as ARM_MATH_SUCCESS */
emh203 0:3d9c67d97d6f 615 status = ARM_MATH_SUCCESS;
emh203 0:3d9c67d97d6f 616 }
emh203 0:3d9c67d97d6f 617
emh203 0:3d9c67d97d6f 618 /* Return to application */
emh203 0:3d9c67d97d6f 619 return (status);
emh203 0:3d9c67d97d6f 620
emh203 0:3d9c67d97d6f 621 #else
emh203 0:3d9c67d97d6f 622
emh203 0:3d9c67d97d6f 623 /* Run the below code for Cortex-M0 */
emh203 0:3d9c67d97d6f 624
emh203 0:3d9c67d97d6f 625 float32_t *pIn1 = pSrcA; /* inputA pointer */
emh203 0:3d9c67d97d6f 626 float32_t *pIn2 = pSrcB; /* inputB pointer */
emh203 0:3d9c67d97d6f 627 float32_t sum; /* Accumulator */
emh203 0:3d9c67d97d6f 628 uint32_t i, j; /* loop counters */
emh203 0:3d9c67d97d6f 629 arm_status status; /* status of Partial convolution */
emh203 0:3d9c67d97d6f 630
emh203 0:3d9c67d97d6f 631 /* Check for range of output samples to be calculated */
emh203 0:3d9c67d97d6f 632 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
emh203 0:3d9c67d97d6f 633 {
emh203 0:3d9c67d97d6f 634 /* Set status as ARM_ARGUMENT_ERROR */
emh203 0:3d9c67d97d6f 635 status = ARM_MATH_ARGUMENT_ERROR;
emh203 0:3d9c67d97d6f 636 }
emh203 0:3d9c67d97d6f 637 else
emh203 0:3d9c67d97d6f 638 {
emh203 0:3d9c67d97d6f 639 /* Loop to calculate convolution for output length number of values */
emh203 0:3d9c67d97d6f 640 for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
emh203 0:3d9c67d97d6f 641 {
emh203 0:3d9c67d97d6f 642 /* Initialize sum with zero to carry on MAC operations */
emh203 0:3d9c67d97d6f 643 sum = 0.0f;
emh203 0:3d9c67d97d6f 644
emh203 0:3d9c67d97d6f 645 /* Loop to perform MAC operations according to convolution equation */
emh203 0:3d9c67d97d6f 646 for (j = 0u; j <= i; j++)
emh203 0:3d9c67d97d6f 647 {
emh203 0:3d9c67d97d6f 648 /* Check the array limitations for inputs */
emh203 0:3d9c67d97d6f 649 if((((i - j) < srcBLen) && (j < srcALen)))
emh203 0:3d9c67d97d6f 650 {
emh203 0:3d9c67d97d6f 651 /* z[i] += x[i-j] * y[j] */
emh203 0:3d9c67d97d6f 652 sum += pIn1[j] * pIn2[i - j];
emh203 0:3d9c67d97d6f 653 }
emh203 0:3d9c67d97d6f 654 }
emh203 0:3d9c67d97d6f 655 /* Store the output in the destination buffer */
emh203 0:3d9c67d97d6f 656 pDst[i] = sum;
emh203 0:3d9c67d97d6f 657 }
emh203 0:3d9c67d97d6f 658 /* set status as ARM_SUCCESS as there are no argument errors */
emh203 0:3d9c67d97d6f 659 status = ARM_MATH_SUCCESS;
emh203 0:3d9c67d97d6f 660 }
emh203 0:3d9c67d97d6f 661 return (status);
emh203 0:3d9c67d97d6f 662
emh203 0:3d9c67d97d6f 663 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emh203 0:3d9c67d97d6f 664
emh203 0:3d9c67d97d6f 665 }
emh203 0:3d9c67d97d6f 666
emh203 0:3d9c67d97d6f 667 /**
emh203 0:3d9c67d97d6f 668 * @} end of PartialConv group
emh203 0:3d9c67d97d6f 669 */