V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

TransformFunctions/arm_cfft_radix2_q15.c

Committer:
emh203
Date:
2014-07-28
Revision:
0:3d9c67d97d6f

File content as of revision 0:3d9c67d97d6f:

/* ----------------------------------------------------------------------   
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.   
*   
* $Date:        12. March 2014  
* $Revision: 	V1.4.3  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_cfft_radix2_q15.c   
*   
* Description:	Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function   
*   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

void arm_radix2_butterfly_q15(
  q15_t * pSrc,
  uint32_t fftLen,
  q15_t * pCoef,
  uint16_t twidCoefModifier);

void arm_radix2_butterfly_inverse_q15(
  q15_t * pSrc,
  uint32_t fftLen,
  q15_t * pCoef,
  uint16_t twidCoefModifier);
	
void arm_bitreversal_q15(
  q15_t * pSrc,
  uint32_t fftLen,
  uint16_t bitRevFactor,
  uint16_t * pBitRevTab);

/**   
 * @ingroup groupTransforms   
 */

/**   
 * @addtogroup ComplexFFT   
 * @{   
 */

/**   
 * @details   
 * @brief Processing function for the fixed-point CFFT/CIFFT.  
 * @param[in]      *S    points to an instance of the fixed-point CFFT/CIFFT structure.  
 * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.  
 * @return none.  
 */

void arm_cfft_radix2_q15(
  const arm_cfft_radix2_instance_q15 * S,
  q15_t * pSrc)
{

  if(S->ifftFlag == 1u)
  {
    arm_radix2_butterfly_inverse_q15(pSrc, S->fftLen,
                                     S->pTwiddle, S->twidCoefModifier);
  }
  else
  {
    arm_radix2_butterfly_q15(pSrc, S->fftLen,
                             S->pTwiddle, S->twidCoefModifier);
  }

  arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
}

/**   
 * @} end of ComplexFFT group   
 */

void arm_radix2_butterfly_q15(
  q15_t * pSrc,
  uint32_t fftLen,
  q15_t * pCoef,
  uint16_t twidCoefModifier)
{
#ifndef ARM_MATH_CM0_FAMILY

  unsigned i, j, k, l;
  unsigned n1, n2, ia;
  q15_t in;
  q31_t T, S, R;
  q31_t coeff, out1, out2;

  //N = fftLen; 
  n2 = fftLen;

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (i = 0; i < n2; i++)
  {
    coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

    ia = ia + twidCoefModifier;

    l = i + n2;

    T = _SIMD32_OFFSET(pSrc + (2 * i));
    in = ((int16_t) (T & 0xFFFF)) >> 1;
    T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    S = _SIMD32_OFFSET(pSrc + (2 * l));
    in = ((int16_t) (S & 0xFFFF)) >> 1;
    S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

    out1 = __SMUAD(coeff, R) >> 16;
    out2 = __SMUSDX(coeff, R);

#else

    out1 = __SMUSDX(R, coeff) >> 16u;
    out2 = __SMUAD(coeff, R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

    _SIMD32_OFFSET(pSrc + (2u * l)) =
      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

    coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

    ia = ia + twidCoefModifier;

    // loop for butterfly 
    i++;
    l++;

    T = _SIMD32_OFFSET(pSrc + (2 * i));
    in = ((int16_t) (T & 0xFFFF)) >> 1;
    T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    S = _SIMD32_OFFSET(pSrc + (2 * l));
    in = ((int16_t) (S & 0xFFFF)) >> 1;
    S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

    out1 = __SMUAD(coeff, R) >> 16;
    out2 = __SMUSDX(coeff, R);

#else

    out1 = __SMUSDX(R, coeff) >> 16u;
    out2 = __SMUAD(coeff, R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

    _SIMD32_OFFSET(pSrc + (2u * l)) =
      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

  // loop for stage 
  for (k = fftLen / 2; k > 2; k = k >> 1)
  {
    n1 = n2;
    n2 = n2 >> 1;
    ia = 0;

    // loop for groups 
    for (j = 0; j < n2; j++)
    {
      coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

      ia = ia + twidCoefModifier;

      // loop for butterfly 
      for (i = j; i < fftLen; i += n1)
      {
        l = i + n2;

        T = _SIMD32_OFFSET(pSrc + (2 * i));

        S = _SIMD32_OFFSET(pSrc + (2 * l));

        R = __QSUB16(T, S);

        _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

        out1 = __SMUAD(coeff, R) >> 16;
        out2 = __SMUSDX(coeff, R);

#else

        out1 = __SMUSDX(R, coeff) >> 16u;
        out2 = __SMUAD(coeff, R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

        _SIMD32_OFFSET(pSrc + (2u * l)) =
          (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

        i += n1;

        l = i + n2;

        T = _SIMD32_OFFSET(pSrc + (2 * i));

        S = _SIMD32_OFFSET(pSrc + (2 * l));

        R = __QSUB16(T, S);

        _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

        out1 = __SMUAD(coeff, R) >> 16;
        out2 = __SMUSDX(coeff, R);

#else

        out1 = __SMUSDX(R, coeff) >> 16u;
        out2 = __SMUAD(coeff, R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

        _SIMD32_OFFSET(pSrc + (2u * l)) =
          (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

      }                         // butterfly loop end 

    }                           // groups loop end 

    twidCoefModifier = twidCoefModifier << 1u;
  }                             // stages loop end 

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

  ia = ia + twidCoefModifier;

  // loop for butterfly 
  for (i = 0; i < fftLen; i += n1)
  {
    l = i + n2;

    T = _SIMD32_OFFSET(pSrc + (2 * i));

    S = _SIMD32_OFFSET(pSrc + (2 * l));

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);

    _SIMD32_OFFSET(pSrc + (2u * l)) = R;

    i += n1;
    l = i + n2;

    T = _SIMD32_OFFSET(pSrc + (2 * i));

    S = _SIMD32_OFFSET(pSrc + (2 * l));

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);

    _SIMD32_OFFSET(pSrc + (2u * l)) = R;

  }                             // groups loop end 


#else

  unsigned i, j, k, l;
  unsigned n1, n2, ia;
  q15_t xt, yt, cosVal, sinVal;


  //N = fftLen; 
  n2 = fftLen;

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (j = 0; j < n2; j++)
  {
    cosVal = pCoef[ia * 2];
    sinVal = pCoef[(ia * 2) + 1];
    ia = ia + twidCoefModifier;

    // loop for butterfly 
    for (i = j; i < fftLen; i += n1)
    {
      l = i + n2;
      xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
      pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;

      yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
      pSrc[2 * i + 1] =
        ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;

      pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
                      ((int16_t) (((q31_t) yt * sinVal) >> 16)));

      pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
                           ((int16_t) (((q31_t) xt * sinVal) >> 16)));

    }                           // butterfly loop end 

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

  // loop for stage 
  for (k = fftLen / 2; k > 2; k = k >> 1)
  {
    n1 = n2;
    n2 = n2 >> 1;
    ia = 0;

    // loop for groups 
    for (j = 0; j < n2; j++)
    {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];
      ia = ia + twidCoefModifier;

      // loop for butterfly 
      for (i = j; i < fftLen; i += n1)
      {
        l = i + n2;
        xt = pSrc[2 * i] - pSrc[2 * l];
        pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;

        yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
        pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;

        pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
                        ((int16_t) (((q31_t) yt * sinVal) >> 16)));

        pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
                             ((int16_t) (((q31_t) xt * sinVal) >> 16)));

      }                         // butterfly loop end 

    }                           // groups loop end 

    twidCoefModifier = twidCoefModifier << 1u;
  }                             // stages loop end 

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (j = 0; j < n2; j++)
  {
    cosVal = pCoef[ia * 2];
    sinVal = pCoef[(ia * 2) + 1];

    ia = ia + twidCoefModifier;

    // loop for butterfly 
    for (i = j; i < fftLen; i += n1)
    {
      l = i + n2;
      xt = pSrc[2 * i] - pSrc[2 * l];
      pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

      pSrc[2u * l] = xt;

      pSrc[2u * l + 1u] = yt;

    }                           // butterfly loop end 

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

#endif //             #ifndef ARM_MATH_CM0_FAMILY

}


void arm_radix2_butterfly_inverse_q15(
  q15_t * pSrc,
  uint32_t fftLen,
  q15_t * pCoef,
  uint16_t twidCoefModifier)
{
#ifndef ARM_MATH_CM0_FAMILY

  unsigned i, j, k, l;
  unsigned n1, n2, ia;
  q15_t in;
  q31_t T, S, R;
  q31_t coeff, out1, out2;

  //N = fftLen; 
  n2 = fftLen;

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (i = 0; i < n2; i++)
  {
    coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

    ia = ia + twidCoefModifier;

    l = i + n2;

    T = _SIMD32_OFFSET(pSrc + (2 * i));
    in = ((int16_t) (T & 0xFFFF)) >> 1;
    T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    S = _SIMD32_OFFSET(pSrc + (2 * l));
    in = ((int16_t) (S & 0xFFFF)) >> 1;
    S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

    out1 = __SMUSD(coeff, R) >> 16;
    out2 = __SMUADX(coeff, R);
#else

    out1 = __SMUADX(R, coeff) >> 16u;
    out2 = __SMUSD(__QSUB(0, coeff), R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

    _SIMD32_OFFSET(pSrc + (2u * l)) =
      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

    coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

    ia = ia + twidCoefModifier;

    // loop for butterfly 
    i++;
    l++;

    T = _SIMD32_OFFSET(pSrc + (2 * i));
    in = ((int16_t) (T & 0xFFFF)) >> 1;
    T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    S = _SIMD32_OFFSET(pSrc + (2 * l));
    in = ((int16_t) (S & 0xFFFF)) >> 1;
    S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);

    R = __QSUB16(T, S);

    _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

    out1 = __SMUSD(coeff, R) >> 16;
    out2 = __SMUADX(coeff, R);
#else

    out1 = __SMUADX(R, coeff) >> 16u;
    out2 = __SMUSD(__QSUB(0, coeff), R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

    _SIMD32_OFFSET(pSrc + (2u * l)) =
      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

  // loop for stage 
  for (k = fftLen / 2; k > 2; k = k >> 1)
  {
    n1 = n2;
    n2 = n2 >> 1;
    ia = 0;

    // loop for groups 
    for (j = 0; j < n2; j++)
    {
      coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

      ia = ia + twidCoefModifier;

      // loop for butterfly 
      for (i = j; i < fftLen; i += n1)
      {
        l = i + n2;

        T = _SIMD32_OFFSET(pSrc + (2 * i));

        S = _SIMD32_OFFSET(pSrc + (2 * l));

        R = __QSUB16(T, S);

        _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

        out1 = __SMUSD(coeff, R) >> 16;
        out2 = __SMUADX(coeff, R);

#else

        out1 = __SMUADX(R, coeff) >> 16u;
        out2 = __SMUSD(__QSUB(0, coeff), R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

        _SIMD32_OFFSET(pSrc + (2u * l)) =
          (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

        i += n1;

        l = i + n2;

        T = _SIMD32_OFFSET(pSrc + (2 * i));

        S = _SIMD32_OFFSET(pSrc + (2 * l));

        R = __QSUB16(T, S);

        _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);

#ifndef ARM_MATH_BIG_ENDIAN

        out1 = __SMUSD(coeff, R) >> 16;
        out2 = __SMUADX(coeff, R);
#else

        out1 = __SMUADX(R, coeff) >> 16u;
        out2 = __SMUSD(__QSUB(0, coeff), R);

#endif //     #ifndef ARM_MATH_BIG_ENDIAN

        _SIMD32_OFFSET(pSrc + (2u * l)) =
          (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

      }                         // butterfly loop end 

    }                           // groups loop end 

    twidCoefModifier = twidCoefModifier << 1u;
  }                             // stages loop end 

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (j = 0; j < n2; j++)
  {
    coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));

    ia = ia + twidCoefModifier;

    // loop for butterfly 
    for (i = j; i < fftLen; i += n1)
    {
      l = i + n2;

      T = _SIMD32_OFFSET(pSrc + (2 * i));

      S = _SIMD32_OFFSET(pSrc + (2 * l));

      R = __QSUB16(T, S);

      _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);

      _SIMD32_OFFSET(pSrc + (2u * l)) = R;

    }                           // butterfly loop end 

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

#else


  unsigned i, j, k, l;
  unsigned n1, n2, ia;
  q15_t xt, yt, cosVal, sinVal;

  //N = fftLen; 
  n2 = fftLen;

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  // loop for groups 
  for (j = 0; j < n2; j++)
  {
    cosVal = pCoef[ia * 2];
    sinVal = pCoef[(ia * 2) + 1];
    ia = ia + twidCoefModifier;

    // loop for butterfly 
    for (i = j; i < fftLen; i += n1)
    {
      l = i + n2;
      xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
      pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;

      yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
      pSrc[2 * i + 1] =
        ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;

      pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
                      ((int16_t) (((q31_t) yt * sinVal) >> 16)));

      pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
                           ((int16_t) (((q31_t) xt * sinVal) >> 16)));

    }                           // butterfly loop end 

  }                             // groups loop end 

  twidCoefModifier = twidCoefModifier << 1u;

  // loop for stage 
  for (k = fftLen / 2; k > 2; k = k >> 1)
  {
    n1 = n2;
    n2 = n2 >> 1;
    ia = 0;

    // loop for groups 
    for (j = 0; j < n2; j++)
    {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];
      ia = ia + twidCoefModifier;

      // loop for butterfly 
      for (i = j; i < fftLen; i += n1)
      {
        l = i + n2;
        xt = pSrc[2 * i] - pSrc[2 * l];
        pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;

        yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
        pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;

        pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
                        ((int16_t) (((q31_t) yt * sinVal) >> 16)));

        pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
                             ((int16_t) (((q31_t) xt * sinVal) >> 16)));

      }                         // butterfly loop end 

    }                           // groups loop end 

    twidCoefModifier = twidCoefModifier << 1u;
  }                             // stages loop end 

  n1 = n2;
  n2 = n2 >> 1;
  ia = 0;

  cosVal = pCoef[ia * 2];
  sinVal = pCoef[(ia * 2) + 1];

  ia = ia + twidCoefModifier;

  // loop for butterfly 
  for (i = 0; i < fftLen; i += n1)
  {
    l = i + n2;
    xt = pSrc[2 * i] - pSrc[2 * l];
    pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

    yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
    pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

    pSrc[2u * l] = xt;

    pSrc[2u * l + 1u] = yt;

  }                             // groups loop end 


#endif //             #ifndef ARM_MATH_CM0_FAMILY

}