V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_rms_q31.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Root Mean Square of the elements of a Q31 vector.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * ---------------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40
emh203 0:3d9c67d97d6f 41 #include "arm_math.h"
emh203 0:3d9c67d97d6f 42
emh203 0:3d9c67d97d6f 43 /**
emh203 0:3d9c67d97d6f 44 * @addtogroup RMS
emh203 0:3d9c67d97d6f 45 * @{
emh203 0:3d9c67d97d6f 46 */
emh203 0:3d9c67d97d6f 47
emh203 0:3d9c67d97d6f 48
emh203 0:3d9c67d97d6f 49 /**
emh203 0:3d9c67d97d6f 50 * @brief Root Mean Square of the elements of a Q31 vector.
emh203 0:3d9c67d97d6f 51 * @param[in] *pSrc points to the input vector
emh203 0:3d9c67d97d6f 52 * @param[in] blockSize length of the input vector
emh203 0:3d9c67d97d6f 53 * @param[out] *pResult rms value returned here
emh203 0:3d9c67d97d6f 54 * @return none.
emh203 0:3d9c67d97d6f 55 *
emh203 0:3d9c67d97d6f 56 * @details
emh203 0:3d9c67d97d6f 57 * <b>Scaling and Overflow Behavior:</b>
emh203 0:3d9c67d97d6f 58 *
emh203 0:3d9c67d97d6f 59 *\par
emh203 0:3d9c67d97d6f 60 * The function is implemented using an internal 64-bit accumulator.
emh203 0:3d9c67d97d6f 61 * The input is represented in 1.31 format, and intermediate multiplication
emh203 0:3d9c67d97d6f 62 * yields a 2.62 format.
emh203 0:3d9c67d97d6f 63 * The accumulator maintains full precision of the intermediate multiplication results,
emh203 0:3d9c67d97d6f 64 * but provides only a single guard bit.
emh203 0:3d9c67d97d6f 65 * There is no saturation on intermediate additions.
emh203 0:3d9c67d97d6f 66 * If the accumulator overflows, it wraps around and distorts the result.
emh203 0:3d9c67d97d6f 67 * In order to avoid overflows completely, the input signal must be scaled down by
emh203 0:3d9c67d97d6f 68 * log2(blockSize) bits, as a total of blockSize additions are performed internally.
emh203 0:3d9c67d97d6f 69 * Finally, the 2.62 accumulator is right shifted by 31 bits to yield a 1.31 format value.
emh203 0:3d9c67d97d6f 70 *
emh203 0:3d9c67d97d6f 71 */
emh203 0:3d9c67d97d6f 72
emh203 0:3d9c67d97d6f 73 void arm_rms_q31(
emh203 0:3d9c67d97d6f 74 q31_t * pSrc,
emh203 0:3d9c67d97d6f 75 uint32_t blockSize,
emh203 0:3d9c67d97d6f 76 q31_t * pResult)
emh203 0:3d9c67d97d6f 77 {
emh203 0:3d9c67d97d6f 78 q63_t sum = 0; /* accumulator */
emh203 0:3d9c67d97d6f 79 q31_t in; /* Temporary variable to store the input */
emh203 0:3d9c67d97d6f 80 uint32_t blkCnt; /* loop counter */
emh203 0:3d9c67d97d6f 81
emh203 0:3d9c67d97d6f 82 #ifndef ARM_MATH_CM0_FAMILY
emh203 0:3d9c67d97d6f 83
emh203 0:3d9c67d97d6f 84 /* Run the below code for Cortex-M4 and Cortex-M3 */
emh203 0:3d9c67d97d6f 85
emh203 0:3d9c67d97d6f 86 q31_t in1, in2, in3, in4; /* Temporary input variables */
emh203 0:3d9c67d97d6f 87
emh203 0:3d9c67d97d6f 88 /*loop Unrolling */
emh203 0:3d9c67d97d6f 89 blkCnt = blockSize >> 2u;
emh203 0:3d9c67d97d6f 90
emh203 0:3d9c67d97d6f 91 /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
emh203 0:3d9c67d97d6f 92 ** a second loop below computes the remaining 1 to 7 samples. */
emh203 0:3d9c67d97d6f 93 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 94 {
emh203 0:3d9c67d97d6f 95 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
emh203 0:3d9c67d97d6f 96 /* Compute sum of the squares and then store the result in a temporary variable, sum */
emh203 0:3d9c67d97d6f 97 /* read two samples from source buffer */
emh203 0:3d9c67d97d6f 98 in1 = pSrc[0];
emh203 0:3d9c67d97d6f 99 in2 = pSrc[1];
emh203 0:3d9c67d97d6f 100
emh203 0:3d9c67d97d6f 101 /* calculate power and accumulate to accumulator */
emh203 0:3d9c67d97d6f 102 sum += (q63_t) in1 *in1;
emh203 0:3d9c67d97d6f 103 sum += (q63_t) in2 *in2;
emh203 0:3d9c67d97d6f 104
emh203 0:3d9c67d97d6f 105 /* read two samples from source buffer */
emh203 0:3d9c67d97d6f 106 in3 = pSrc[2];
emh203 0:3d9c67d97d6f 107 in4 = pSrc[3];
emh203 0:3d9c67d97d6f 108
emh203 0:3d9c67d97d6f 109 /* calculate power and accumulate to accumulator */
emh203 0:3d9c67d97d6f 110 sum += (q63_t) in3 *in3;
emh203 0:3d9c67d97d6f 111 sum += (q63_t) in4 *in4;
emh203 0:3d9c67d97d6f 112
emh203 0:3d9c67d97d6f 113
emh203 0:3d9c67d97d6f 114 /* update source buffer to process next samples */
emh203 0:3d9c67d97d6f 115 pSrc += 4u;
emh203 0:3d9c67d97d6f 116
emh203 0:3d9c67d97d6f 117 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 118 blkCnt--;
emh203 0:3d9c67d97d6f 119 }
emh203 0:3d9c67d97d6f 120
emh203 0:3d9c67d97d6f 121 /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
emh203 0:3d9c67d97d6f 122 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 123 blkCnt = blockSize % 0x4u;
emh203 0:3d9c67d97d6f 124
emh203 0:3d9c67d97d6f 125 #else
emh203 0:3d9c67d97d6f 126
emh203 0:3d9c67d97d6f 127 /* Run the below code for Cortex-M0 */
emh203 0:3d9c67d97d6f 128 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 129
emh203 0:3d9c67d97d6f 130 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emh203 0:3d9c67d97d6f 131
emh203 0:3d9c67d97d6f 132 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 133 {
emh203 0:3d9c67d97d6f 134 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
emh203 0:3d9c67d97d6f 135 /* Compute sum of the squares and then store the results in a temporary variable, sum */
emh203 0:3d9c67d97d6f 136 in = *pSrc++;
emh203 0:3d9c67d97d6f 137 sum += (q63_t) in *in;
emh203 0:3d9c67d97d6f 138
emh203 0:3d9c67d97d6f 139 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 140 blkCnt--;
emh203 0:3d9c67d97d6f 141 }
emh203 0:3d9c67d97d6f 142
emh203 0:3d9c67d97d6f 143 /* Convert data in 2.62 to 1.31 by 31 right shifts and saturate */
emh203 0:3d9c67d97d6f 144 /* Compute Rms and store the result in the destination vector */
emh203 0:3d9c67d97d6f 145 arm_sqrt_q31(clip_q63_to_q31((sum / (q63_t) blockSize) >> 31), pResult);
emh203 0:3d9c67d97d6f 146 }
emh203 0:3d9c67d97d6f 147
emh203 0:3d9c67d97d6f 148 /**
emh203 0:3d9c67d97d6f 149 * @} end of RMS group
emh203 0:3d9c67d97d6f 150 */