Add functions to read Ax, Ay and Az individually
ADXL345.cpp
- Committer:
- elrafapadron
- Date:
- 2010-10-25
- Revision:
- 0:baba3e2f977d
File content as of revision 0:baba3e2f977d:
/** * @author Aaron Berk * * @section LICENSE * * Copyright (c) 2010 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * ADXL345, triple axis, digital interface, accelerometer. * * Datasheet: * * http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf */ /** * Includes */ #include "ADXL345.h" ADXL345::ADXL345(PinName mosi, PinName miso, PinName sck, PinName cs) : spi_(mosi, miso, sck), nCS_(cs) { //2MHz, allowing us to use the fastest data rates. spi_.frequency(2000000); spi_.format(8,3); nCS_ = 1; wait_us(500); } int ADXL345::getDevId(void) { return oneByteRead(ADXL345_DEVID_REG); } int ADXL345::getTapThreshold(void) { return oneByteRead(ADXL345_THRESH_TAP_REG); } void ADXL345::setTapThreshold(int threshold) { oneByteWrite(ADXL345_THRESH_TAP_REG, threshold); } int ADXL345::getOffset(int axis) { int address = 0; if (axis == ADXL345_X) { address = ADXL345_OFSX_REG; } else if (axis == ADXL345_Y) { address = ADXL345_OFSY_REG; } else if (axis == ADXL345_Z) { address = ADXL345_OFSZ_REG; } return oneByteRead(address); } void ADXL345::setOffset(int axis, char offset) { int address = 0; if (axis == ADXL345_X) { address = ADXL345_OFSX_REG; } else if (axis == ADXL345_Y) { address = ADXL345_OFSY_REG; } else if (axis == ADXL345_Z) { address = ADXL345_OFSZ_REG; } return oneByteWrite(address, offset); } int ADXL345::getTapDuration(void) { return oneByteRead(ADXL345_DUR_REG)*625; } void ADXL345::setTapDuration(int duration_us) { int tapDuration = duration_us / 625; oneByteWrite(ADXL345_DUR_REG, tapDuration); } float ADXL345::getTapLatency(void) { return oneByteRead(ADXL345_LATENT_REG)*1.25; } void ADXL345::setTapLatency(int latency_ms) { int tapLatency = latency_ms / 1.25; oneByteWrite(ADXL345_LATENT_REG, tapLatency); } float ADXL345::getWindowTime(void) { return oneByteRead(ADXL345_WINDOW_REG)*1.25; } void ADXL345::setWindowTime(int window_ms) { int windowTime = window_ms / 1.25; oneByteWrite(ADXL345_WINDOW_REG, windowTime); } int ADXL345::getActivityThreshold(void) { return oneByteRead(ADXL345_THRESH_ACT_REG); } void ADXL345::setActivityThreshold(int threshold) { oneByteWrite(ADXL345_THRESH_ACT_REG, threshold); } int ADXL345::getInactivityThreshold(void) { return oneByteRead(ADXL345_THRESH_INACT_REG); } void ADXL345::setInactivityThreshold(int threshold) { return oneByteWrite(ADXL345_THRESH_INACT_REG, threshold); } int ADXL345::getTimeInactivity(void) { return oneByteRead(ADXL345_TIME_INACT_REG); } void ADXL345::setTimeInactivity(int timeInactivity) { oneByteWrite(ADXL345_TIME_INACT_REG, timeInactivity); } int ADXL345::getActivityInactivityControl(void) { return oneByteRead(ADXL345_ACT_INACT_CTL_REG); } void ADXL345::setActivityInactivityControl(int settings) { oneByteWrite(ADXL345_ACT_INACT_CTL_REG, settings); } int ADXL345::getFreefallThreshold(void) { return oneByteRead(ADXL345_THRESH_FF_REG); } void ADXL345::setFreefallThreshold(int threshold) { oneByteWrite(ADXL345_THRESH_FF_REG, threshold); } int ADXL345::getFreefallTime(void) { return oneByteRead(ADXL345_TIME_FF_REG)*5; } void ADXL345::setFreefallTime(int freefallTime_ms) { int freefallTime = freefallTime_ms / 5; oneByteWrite(ADXL345_TIME_FF_REG, freefallTime); } int ADXL345::getTapAxisControl(void) { return oneByteRead(ADXL345_TAP_AXES_REG); } void ADXL345::setTapAxisControl(int settings) { oneByteWrite(ADXL345_TAP_AXES_REG, settings); } int ADXL345::getTapSource(void) { return oneByteRead(ADXL345_ACT_TAP_STATUS_REG); } void ADXL345::setPowerMode(char mode) { //Get the current register contents, so we don't clobber the rate value. char registerContents = oneByteRead(ADXL345_BW_RATE_REG); registerContents = (mode << 4) | registerContents; oneByteWrite(ADXL345_BW_RATE_REG, registerContents); } int ADXL345::getPowerControl(void) { return oneByteRead(ADXL345_POWER_CTL_REG); } void ADXL345::setPowerControl(int settings) { oneByteWrite(ADXL345_POWER_CTL_REG, settings); } int ADXL345::getInterruptEnableControl(void) { return oneByteRead(ADXL345_INT_ENABLE_REG); } void ADXL345::setInterruptEnableControl(int settings) { oneByteWrite(ADXL345_INT_ENABLE_REG, settings); } int ADXL345::getInterruptMappingControl(void) { return oneByteRead(ADXL345_INT_MAP_REG); } void ADXL345::setInterruptMappingControl(int settings) { oneByteWrite(ADXL345_INT_MAP_REG, settings); } int ADXL345::getInterruptSource(void){ return oneByteRead(ADXL345_INT_SOURCE_REG); } int ADXL345::getDataFormatControl(void){ return oneByteRead(ADXL345_DATA_FORMAT_REG); } void ADXL345::setDataFormatControl(int settings){ oneByteWrite(ADXL345_DATA_FORMAT_REG, settings); } void ADXL345::setDataRate(int rate) { //Get the current register contents, so we don't clobber the power bit. char registerContents = oneByteRead(ADXL345_BW_RATE_REG); registerContents &= 0x10; registerContents |= rate; oneByteWrite(ADXL345_BW_RATE_REG, registerContents); } int ADXL345::getAx(){ char buffer[2]; multiByteRead(ADXL345_DATAX0_REG, buffer, 2); return ((int)buffer[1] << 8 | (int)buffer[0]); } int ADXL345::getAy(){ char buffer[2]; multiByteRead(ADXL345_DATAY0_REG, buffer, 2); return ((int)buffer[1] << 8 | (int)buffer[0]); } int ADXL345::getAz(){ char buffer[2]; multiByteRead(ADXL345_DATAZ0_REG, buffer, 2); return ((int)buffer[1] << 8 | (int)buffer[0]); } void ADXL345::getOutput(int* readings){ char buffer[6]; multiByteRead(ADXL345_DATAX0_REG, buffer, 6); readings[0] = (int)buffer[1] << 8 | (int)buffer[0]; readings[1] = (int)buffer[3] << 8 | (int)buffer[2]; readings[2] = (int)buffer[5] << 8 | (int)buffer[4]; } int ADXL345::getFifoControl(void){ return oneByteRead(ADXL345_FIFO_CTL); } void ADXL345::setFifoControl(int settings){ oneByteWrite(ADXL345_FIFO_STATUS, settings); } int ADXL345::getFifoStatus(void){ return oneByteRead(ADXL345_FIFO_STATUS); } int ADXL345::oneByteRead(int address) { int tx = (ADXL345_SPI_READ | (address & 0x3F)); int rx = 0; nCS_ = 0; //Send address to read from. spi_.write(tx); //Read back contents of address. rx = spi_.write(0x00); nCS_ = 1; return rx; } void ADXL345::oneByteWrite(int address, char data) { int tx = (ADXL345_SPI_WRITE | (address & 0x3F)); nCS_ = 0; //Send address to write to. spi_.write(tx); //Send data to be written. spi_.write(data); nCS_ = 1; } void ADXL345::multiByteRead(int startAddress, char* buffer, int size) { int tx = (ADXL345_SPI_READ | ADXL345_MULTI_BYTE | (startAddress & 0x3F)); nCS_ = 0; //Send address to start reading from. spi_.write(tx); for (int i = 0; i < size; i++) { buffer[i] = spi_.write(0x00); } nCS_ = 1; } void ADXL345::multiByteWrite(int startAddress, char* buffer, int size) { int tx = (ADXL345_SPI_WRITE | ADXL345_MULTI_BYTE | (startAddress & 0x3F)); nCS_ = 0; //Send address to start reading from. spi_.write(tx); for (int i = 0; i < size; i++) { buffer[i] = spi_.write(0x00); } nCS_ = 1; }