BLE ADV sensor for 2-pin interrupt (i.e. window/door sensor w/ reed switch)

Dependencies:   BLE_API mbed nRF51822

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers main.cpp Source File

main.cpp

00001 /*  
00002  * Copyright (c) Eric Tsai 2017
00003  *
00004  *
00005  * Licensed under the Apache License, Version 2.0 (the "License");
00006  * you may not use this file except in compliance with the License.
00007  * You may obtain a copy of the License at
00008  *
00009  *     http://www.apache.org/licenses/LICENSE-2.0
00010  *
00011  * Unless required by applicable law or agreed to in writing, software
00012  * distributed under the License is distributed on an "AS IS" BASIS,
00013  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00014  * See the License for the specific language governing permissions and
00015  * limitations under the License.
00016  *
00017  *
00018  * Credit: started with the basic BLE Temperature Beacon code from mbed Bluetooth Low Energy team
00019  * https://developer.mbed.org/teams/Bluetooth-Low-Energy/code/BLE_TemperatureBeacon/file/0a8bbb6dea16/main.cpp
00020  *
00021  * BLE sensor as Beacon advertisements.  Intended to function with specific BLE observer.
00022  * Tested on nRF51822 targets on mbed.
00023  * keywords:  todo, tochange
00024 */
00025 
00026 
00027 extern "C"
00028 {
00029    #include "nrf_ecb.h"  //required to call the ecb functions for encryption
00030 }
00031  
00032 #include "mbed.h"
00033 #include "toolchain.h"
00034 #include "ble/BLE.h"
00035 #include "TMP_nrf51/TMP_nrf51.h"
00036 
00037 
00038 /*******************************************************************************************
00039  * START tochange: items that may need customization depending on sensors, hardware, and desired behavior
00040 *******************************************************************************************/
00041 const uint16_t Periodic_Update_Seconds = 20; //number of seconds between periodic I/O status re-transmits 900s =15 min.
00042 #define MyDebugEnb 0  //enables serial output for debug, consumes ~1mA when idle
00043 uint8_t magnet_near=0;  //this I/O, specifically for reed switch sensor
00044 
00045 
00046 /* hardware interrupt pins, selected based on hardware
00047  *Syntax:  Pin "P0.4" on nRF51822 documentation is mbed "p4".
00048  * InterruptIn is pulled-up.  GND the pin to activate.
00049 */
00050 InterruptIn button1(p0);    //nRF51822 P0.0
00051 InterruptIn button2(p1);    //nRF51822 P0.1
00052 /******************************************************************************************
00053  * END tochange
00054 *******************************************************************************************/
00055 
00056 
00057 #if MyDebugEnb
00058 // if you see ~1mA consumption during sleep, that's because MyDebugEnb==1, it's enabled.
00059 Serial device(p9, p11);  //nRF51822 uart :  TX=p9.  RX=p11
00060 #endif
00061 
00062 static Ticker Tic_Stop_Adv;   //used to stop advertising after X seconds
00063 static Ticker Tic_Debounce; //debounce I/O
00064 static Ticker Tic_Periodic; //transmit sensor data on a periodic basis outside I/O events
00065 
00066 const uint16_t Periodicity = 1800;   //birthday periodicity used for spoof checking, must match gateway. Should be 1800 seconds for 30minutes
00067 static Timer Tmr_From_Birthday;  //holds number of seconds since birthday, for spoof detection
00068 static Ticker Tic_Birthday; //resets Tmr_From_Birthday every Periodicity seconds, for spoof detection
00069 
00070 
00071 static bool Flag_Update_IO = false;  //flag to indicate event is hardware interrupt
00072 static bool Flag_Periodic_Call = false;  //flag to indicate event is periodic callback
00073 static bool Flag_Detach_Adv_Tic = false;  //flag to stop advertising
00074 
00075 /* Optional: Device Name, add for human read-ability */
00076 const static char     DEVICE_NAME[] = "LOL";
00077 
00078 
00079 //Advertisement Data
00080 //note:  AdvData[] holds bytes [5] to byte [30] of entire advertising data.  The user content part after ADV flag and header
00081 static uint8_t AdvData[] = {0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0};  //26 Bytes manufacturer specific data
00082 char buffer[10]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //hold I/O reading json
00083 char bat_volt_char[6] = {0, 0, 0, 0, 0, 0}; //hold json for battery reading
00084 uint8_t Adv_First_Section[10];  //holds the first several bytes with a pattern indicating this sensor is "one of ours" 
00085 uint8_t mac_reverse[6] = {0x0,0x0,0x0,0x0,0x0,0x0};  //mac address for this module
00086 
00087 /*****  Advertisement structure is 31 Bytes  ****************
00088 
00089 https://docs.mbed.com/docs/ble-intros/en/latest/Advanced/CustomGAP/
00090 
00091 Full Advertisement:
00092 First 5 bytes are set by stack according to flag and header parameters.
00093 Last 26 bytes are user data
00094 -- tabbed --
00095 Byte 0  |   AD1 Length  |       0x02    |   AD1 is 2 bytes long
00096 Byte 1  |   AD1 Type    |       0x01    |   AD1 Data interpreted as flag
00097 Byte 2  |   AD1 Data 0  |       0x06    |   AD1 Data flag mean "00000110"
00098 Byte 3  |   AD2 Length  |       0x1B    |   AD2 is 27 bytes (0x1B) long (rest of this data)
00099 Byte 4  |   AD2 Type    |       0xFF    |   0xFF mean Manufacturer Specific Data
00100 Byte 5  |   AD2 Data 0  |   ADV_Data[0] |   "our device" flag, MAC[3]
00101 Byte 6  |   AD2 Data 1  |   ADV_Data[1] |   "out device" flag, MAC[2]
00102 Byte 7  |   AD2 Data 2  |   ADV_Data[2] |   "out device" flag, MAC[1]
00103 Byte 8  |   AD2 Data 3  |   ADV_Data[3] |   "out device" flag, MAC[0]
00104 Byte 9  |   AD2 Data 4  |   ADV_Data[4] |   battery voltage json MSB, ie 3 in 3.14
00105 Byte 10 |   AD2 Data 5  |   ADV_Data[5] |   battery voltage json
00106 Byte 11 |   AD2 Data 6  |   ADV_Data[6] |   battery voltage json
00107 Byte 12 |   AD2 Data 7  |   ADV_Data[7] |   battery voltage json LSB, ie 4 in 3.14
00108 Byte 13 |   AD2 Data 8  |   ADV_Data[8] |   reserved
00109 Byte 14 |   AD2 Data 9  |   ADV_Data[9] |   reserved
00110 Byte 15 |   AD2 Data 10 |   ADV_Data[10] Encrypted  |   spoof - clock high byte, range 0 to 1800 seconds
00111 Byte 16 |   AD2 Data 11 |   ADV_Data[11] Encrypted  |   spoof - clock low byte
00112 Byte 17 |   AD2 Data 12 |   ADV_Data[12] Encrypted  |   Xmit_Cnt - increments per transmit event, 0-255
00113 Byte 18 |   AD2 Data 13 |   ADV_Data[13] Encrypted  |   JSON[0]
00114 Byte 19 |   AD2 Data 14 |   ADV_Data[14] Encrypted  |   JSON[1]
00115 Byte 20 |   AD2 Data 15 |   ADV_Data[15] Encrypted  |   JSON[2]
00116 Byte 21 |   AD2 Data 16 |   ADV_Data[16] Encrypted  |   JSON[3]
00117 Byte 22 |   AD2 Data 17 |   ADV_Data[17] Encrypted  |   JSON[4]
00118 Byte 23 |   AD2 Data 18 |   ADV_Data[18] Encrypted  |   JSON[5]
00119 Byte 24 |   AD2 Data 19 |   ADV_Data[19] Encrypted  |   JSON[6]
00120 Byte 25 |   AD2 Data 20 |   ADV_Data[20] Encrypted  |   JSON[7]
00121 Byte 26 |   AD2 Data 21 |   ADV_Data[21] Encrypted  |   JSON[8]
00122 Byte 27 |   AD2 Data 22 |   ADV_Data[22] Encrypted  |   JSON[9]
00123 Byte 28 |   AD2 Data 23 |   ADV_Data[23] Encrypted  |   JSON[10]
00124 Byte 29 |   AD2 Data 24 |   ADV_Data[24] Encrypted  |   JSON[11]
00125 Byte 30 |   AD2 Data 25 |   ADV_Data[25] Encrypted  |   JSON[12]
00126 
00127 ***************************************************/
00128 
00129 
00130 static uint8_t key[16] = {0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4};
00131 //26 bytes adv data
00132 static uint8_t encrypted[26] = {0x0,0x0,0x0,0x1,0x1,0x1,0x2,0x2,0x2,0x3,0x3,0x3,0x4,0x4,0x4,0x5,0x5,0x5,0x6,0x6,0x6,0x7,0x7,0x7,0x8,0x8};   /* Example of hex data */
00133 //static uint8_t key_buf[16] = {0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4};
00134 static uint8_t key_buf[16] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x1, 0x2};
00135 static uint8_t src_buf[16] = {0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4};
00136 static uint8_t des_buf[16] = {0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4,0x1,0x2,0x3,0x4};
00137 
00138 uint8_t Xmit_Cnt = 1;
00139 
00140 
00141 
00142 /* **** NOT USED **** */
00143 //16byte UUID loading happens here
00144 //Look at <GapAdvertisingData.h> for rest of definition
00145 struct ApplicationData_t {
00146     //Byte 0:  AppID High Byte
00147     //Byte 1:  AppID Low Byte
00148     //Byte 2:  sensor High Word
00149     //Byte 3:
00150     //Byte 4:
00151     //Byte 5:  sensor Low Byte
00152     
00153     
00154     //app ID is 16 bit, (0xFEFE)
00155     uint16_t    applicationSpecificId; /* An ID used to identify temperature value in the manufacture specific AD data field */
00156     
00157     TMP_nrf51::TempSensorValue_t tmpSensorValue;        /* this is a float (32-bit), user data */
00158 } PACKED;
00159 
00160 
00161 
00162 void debounce_Callback(void)
00163 {
00164     Tic_Debounce.detach();
00165     Flag_Update_IO = true;  //start advertising
00166     /* Note that the buttonPressedCallback() executes in interrupt context, so it is safer to access
00167      * BLE device API from the main thread. */
00168 
00169 }
00170 
00171 //ISR for I/O interrupt
00172 void buttonPressedCallback(void)
00173 {
00174     Tic_Debounce.attach(debounce_Callback, 1); //ok to attach multiple times, recent one wins
00175 }
00176 
00177 //ISR for I/O interrupt
00178 void buttonReleasedCallback(void)
00179 {
00180     
00181     Tic_Debounce.attach(debounce_Callback, 1);  
00182 }
00183 
00184 
00185 void stop_adv_Callback(void)
00186 {
00187     //stops advertising after X seconds
00188     /* Note that the Callback() executes in interrupt context, so it is safer to do
00189      * heavy-weight sensor polling from the main thread (where we should be able to block safely, if needed). */
00190     Flag_Detach_Adv_Tic = true;
00191 
00192 }
00193 
00194 /* ****************************************
00195  * Decides what actions need to be performed on periodic basis
00196 *******************************************/
00197 void periodic_Callback(void)
00198 {
00199     Flag_Update_IO = true;
00200     Flag_Periodic_Call = true;
00201 }
00202 
00203 
00204 /* ****************************************
00205  * No RTC available, tickers only have a 35 minute range.
00206  * So periodicity for spoof avoidance is set to 30 minutes
00207 *******************************************/
00208 void clock_reset_Callback(void)
00209 {
00210 #if MyDebugEnb
00211     device.printf("===== reset timer =====");
00212     device.printf("\r\n");
00213 #endif
00214     Tmr_From_Birthday.reset();
00215 };
00216 
00217 
00218 void setupApplicationData(ApplicationData_t &appData)
00219 {
00220     // two byte ID:  0xFEFE
00221     static const uint16_t APP_SPECIFIC_ID_TEST = 0xFEFE;        //2 byte application ID
00222 
00223     appData.applicationSpecificId = APP_SPECIFIC_ID_TEST;
00224 }
00225 
00226 
00227 
00228 /**
00229  * This function is called when the ble initialization process has failled
00230  */
00231 void onBleInitError(BLE &ble, ble_error_t error)
00232 {
00233     /* Initialization error handling should go here */
00234 }
00235 
00236 
00237 
00238 /**
00239  * Callback triggered when the ble initialization process has finished
00240  */
00241 void bleInitComplete(BLE::InitializationCompleteCallbackContext *params)
00242 {
00243     BLE&        ble   = params->ble;
00244     ble_error_t error = params->error;
00245 
00246     if (error != BLE_ERROR_NONE) {
00247         /* In case of error, forward the error handling to onBleInitError */
00248         onBleInitError(ble, error);
00249         return;
00250     }
00251 
00252     /* Ensure that it is the default instance of BLE */
00253     if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {
00254         return;
00255     }
00256     
00257     /* Set device name characteristic data */
00258     ble.gap().setDeviceName((const uint8_t *) DEVICE_NAME);
00259 
00260     /* Setup advertising payload */
00261     //set modes "no EDR", "discoverable" for beacon type advertisements
00262     ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
00263     
00264 
00265     //from GAP example
00266     /* Sacrifice 2B of 31B to AdvType overhead, rest goes to AdvData array you define */
00267     ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::MANUFACTURER_SPECIFIC_DATA, AdvData, sizeof(AdvData));
00268 
00269     /* Setup advertising parameters:  not connectable */
00270     ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_NON_CONNECTABLE_UNDIRECTED);
00271     ble.gap().setAdvertisingInterval(900);  //one advertisment every 300ms.  Self tickers, so you don't have to worry.
00272 
00273 }
00274 
00275 
00276 //not needed anymore
00277 void my_analogin_init(void)
00278 {
00279     
00280     NRF_ADC->CONFIG = (ADC_CONFIG_RES_10bit << ADC_CONFIG_RES_Pos) |
00281                       (ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00282                       //(ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00283                       (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) |
00284                       (ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) |
00285                       //(ADC_CONFIG_PSEL_AnalogInput4 << ADC_CONFIG_PSEL_Pos) |
00286                       (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos);
00287     NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled;
00288 }
00289 
00290 
00291 /* ****************************************
00292  * Read battery voltage using bandgap reference
00293  * shunt Vdd to ADC, thanks to Marcelo Salazar's notes here:
00294  * https://developer.mbed.org/users/MarceloSalazar/notebook/measuring-battery-voltage-with-nordic-nrf51x/
00295 *******************************************/
00296 uint16_t read_bat_volt(void)
00297 {
00298     //10 bit resolution, route Vdd as analog input, set ADC ref to VBG band gap
00299     //disable analog pin select "PSEL" because we're using Vdd as analog input
00300     //no external voltage reference
00301     NRF_ADC->CONFIG = (ADC_CONFIG_RES_10bit << ADC_CONFIG_RES_Pos) |
00302                       (ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00303                       //(ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00304                       (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) |
00305                       (ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) |
00306                       //(ADC_CONFIG_PSEL_AnalogInput4 << ADC_CONFIG_PSEL_Pos) |
00307                       (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos);
00308 
00309     //NRF_ADC->CONFIG     &= ~ADC_CONFIG_PSEL_Msk;
00310     //NRF_ADC->CONFIG     |= ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos;
00311     NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled;
00312     NRF_ADC->TASKS_START = 1;
00313     
00314     
00315     //while loop doesn't actually loop until reading comlete, use a wait.
00316     while (((NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) >> ADC_BUSY_BUSY_Pos) == ADC_BUSY_BUSY_Busy) {};
00317     wait_ms(1);
00318 
00319     //save off RESULT before disabling.
00320     //uint16_t myresult = (uint16_t)NRF_ADC->RESULT;
00321     
00322     //disable ADC to lower bat consumption
00323     NRF_ADC->TASKS_STOP = 1;
00324     //NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled;    //disable to shutdown ADC & lower bat consumption
00325     
00326     return (uint16_t)NRF_ADC->RESULT; // 10 bit
00327     //return myresult;
00328 }  //end read_bat_volt
00329 
00330 
00331 
00332 /* ****************************************
00333  * Read battery voltage using bandgap reference
00334  * shunt analog pin to ADC, from API here
00335  * https://developer.mbed.org/users/mbed_official/code/mbed-src/file/cb4253f91ada/targets/hal/TARGET_NORDIC/TARGET_NRF51822/analogin_api.c
00336 *******************************************/
00337 uint16_t read_ADC_pin(void)
00338 {
00339 
00340     //10 bit resolution, route PSEL pin as 1/3 input sel,
00341     //set ADC ref to VBG band gap
00342     //set AnalogInput4 as input pin (this is P0.03)
00343     //no external voltage reference
00344     NRF_ADC->CONFIG = (ADC_CONFIG_RES_10bit << ADC_CONFIG_RES_Pos) |
00345                       //(ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00346                       (ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
00347                       (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) |
00348                        //ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) |
00349                       (ADC_CONFIG_PSEL_AnalogInput4 << ADC_CONFIG_PSEL_Pos) |
00350                       (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos);
00351     //set pin select to AnalogInput4 = pin 7 = p0.03 = AIN4
00352     //NRF_ADC->CONFIG     &= ~ADC_CONFIG_PSEL_Msk;
00353     //NRF_ADC->CONFIG     |= ADC_CONFIG_PSEL_AnalogInput4 << ADC_CONFIG_PSEL_Pos;
00354     NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled;
00355     NRF_ADC->TASKS_START = 1;
00356     
00357     
00358     //while loop doesn't actually loop until reading comlete, use a wait.
00359     while (((NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) >> ADC_BUSY_BUSY_Pos) == ADC_BUSY_BUSY_Busy) {};
00360     wait_ms(1);     //needed because busy while loop doesn't run.
00361 
00362     //save off RESULT before disabling.
00363     //uint16_t myresult = (uint16_t)NRF_ADC->RESULT;
00364     
00365     //disable ADC to lower bat consumption
00366     //NRF_ADC->TASKS_STOP = 1;
00367     //NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled;    //disable to shutdown ADC & lower bat consumption
00368     
00369     return (uint16_t)NRF_ADC->RESULT; // 10 bit
00370     //return myresult;
00371 }  //end read_ADC_pin
00372 
00373 
00374 /* ****************************************
00375  * Pattern scheme indicating "one of ours"
00376  * generate first part of ADV data so that observer can recognize it as "one of ours".
00377  * use specific schema to decide how we're recognizing our sensor ADV
00378 *******************************************/
00379 void hash_first_section(uint8_t * dest, const uint8_t * mac_addr, const char * bat_volt_str)
00380 {
00381     dest[0] = mac_addr[3];
00382     dest[1] = mac_addr[2];
00383     dest[2] = mac_addr[1];
00384     dest[3] = mac_addr[0];
00385     dest[4] = bat_volt_str[0];
00386     dest[5] = bat_volt_str[1];
00387     dest[6] = bat_volt_str[2];
00388     dest[7] = bat_volt_str[3];
00389     dest[8] = 0x10;
00390     dest[9] = 0x11;
00391     #if MyDebugEnb
00392         
00393         device.printf("hash array: ");
00394         for (int i=0; i<10; i++)
00395         {
00396             device.printf("%x ", dest[i]);
00397         }
00398         device.printf("\r\n");
00399     #endif
00400 }
00401 
00402 
00403 /* ****************************************
00404  * 
00405  * Main Loop
00406  * 
00407 *******************************************/
00408 int main(void)
00409 {
00410 
00411     #if MyDebugEnb
00412         device.baud(9600);
00413         device.printf("started sensor node 36 ");
00414         device.printf("\r\n");
00415     #endif
00416 
00417     
00418     Tmr_From_Birthday.start();      //tracks # sec since birthday
00419 
00420 
00421     BLE &ble = BLE::Instance();
00422     ble.init(bleInitComplete);
00423     
00424     float bat_reading;  //hold battery voltage reading (Vbg/Vcc)
00425     
00426     my_analogin_init();//routes band-gap to analog input
00427 
00428     /* SpinWait for initialization to complete. This is necessary because the
00429      * BLE object is used in the main loop below. */
00430     while (ble.hasInitialized() == false) { /* spin loop */ }
00431     
00432     //every X seconds, sends period update, up to 1800 (30 minutes)
00433     Tic_Periodic.attach(periodic_Callback, Periodic_Update_Seconds);  //send updated I/O every x seconds
00434     Tic_Birthday.attach(clock_reset_Callback, Periodicity);  //clock algorithm periodicity
00435 
00436 
00437     ble.getAddress(0,mac_reverse);  //last byte of MAC (as shown on phone app) is at mac[0], not mac[6];
00438     #if MyDebugEnb
00439         device.printf("mac = ");
00440         for (int i=0; i<6; i++) //prints out MAC address in reverse order; opps.
00441         {
00442             device.printf("%x:", mac_reverse[i]);
00443         }
00444         device.printf("\r\n");
00445     #endif
00446     while (true) 
00447     {  //Main Loop
00448 
00449         uint16_t seconds_Old =(uint16_t)(Tmr_From_Birthday.read_ms()/1000); // 0-1800 seconds (30 minutes)
00450 
00451         #if MyDebugEnb
00452             device.printf("current time in seconds: %d \r\n", seconds_Old);
00453         #endif
00454 
00455         //set both pins to pull-up, so they're not floating when we read state
00456         button1.mode(PullUp);
00457         button2.mode(PullUp);
00458         
00459         //expect either button1 or button2 is grounded, b/c using SPDT reed switch
00460         //the "common" pin on the reed switch should be on GND
00461         uint8_t button1_state = button1.read();
00462         uint8_t button2_state = button2.read();
00463         
00464         
00465         //let's just update the pins on every wake.  Insurance against const drain.
00466         //if state == 0, pin is grounded.  Unset interrupt and float pin, set the other pin for ISR
00467         if ( (button1_state == 0) && (button2_state == 1) )
00468         {
00469             magnet_near = 1;
00470             //button1.disable_irq() //don't know if disables IRQ on port or pin
00471             button1.fall(NULL);     //disable interrupt
00472             button1.rise(NULL);     //disable interrupt
00473             button1.mode(PullNone); //float pin to save battery
00474             
00475             //button2.disable_irq() //don't know if disables IRQ on port or pin
00476             button2.fall(buttonReleasedCallback);     //enable interrupt
00477             button2.rise(buttonReleasedCallback);     //enable interrupt
00478             button2.mode(PullUp); //pull up on pin to get interrupt
00479             #if MyDebugEnb
00480             device.printf("=== button 1!  %d seconds=== \r\n", seconds_Old);
00481             #endif
00482         }  //end if button2
00483         else if ( (button1_state == 1) && (button2_state == 0) )       //assume other pin is open circuit
00484         {
00485             magnet_near = 0;
00486             //button1.disable_irq() //don't know if disables IRQ on port or pin
00487             button1.fall(buttonReleasedCallback);     //enable interrupt
00488             button1.rise(buttonReleasedCallback);     //enable interrupt
00489             button1.mode(PullUp); //pull up on pin to get interrupt
00490             
00491             //button2.disable_irq() //don't know if disables IRQ on port or pin
00492             button2.fall(NULL);     //disable interrupt
00493             button2.rise(NULL);     //disable interrupt
00494             button2.mode(PullNone); //float pin to save battery
00495             #if MyDebugEnb
00496             device.printf("=== button 2! === %d seconds\r\n", seconds_Old);
00497             #endif
00498         }  //end if button1
00499         else    //odd state, shouldn't happen, suck battery and pullup both pins
00500         {
00501             magnet_near = 2;
00502             //AdvData[4] = 0x33;
00503             //button1.disable_irq() //don't know if disables IRQ on port or pin
00504             button1.fall(buttonReleasedCallback);     //disable interrupt
00505             button1.rise(buttonReleasedCallback);     //disable interrupt
00506             button1.mode(PullUp); //float pin to save battery
00507             
00508             //button2.disable_irq() //don't know if disables IRQ on port or pin
00509             button2.fall(buttonReleasedCallback);     //disable interrupt
00510             button2.rise(buttonReleasedCallback);     //disable interrupt
00511             button2.mode(PullUp); //float pin to save battery
00512             #if MyDebugEnb
00513             device.printf("no buttons!! %d seconds\r\n", seconds_Old);
00514             #endif
00515         }  //end odd state
00516         
00517         
00518         if (Flag_Update_IO) {
00519             /* Do blocking calls or whatever hardware-specific action is
00520              * necessary to poll the sensor. */
00521 
00522             //call attach again on periodic update to reset ticker
00523             //next periodic updates happens Perioidc_Update_Seconds after I/O events
00524             Tic_Periodic.attach(periodic_Callback, Periodic_Update_Seconds);   
00525             Xmit_Cnt++; //increment transmit counter when updating I/O
00526             
00527             
00528             //read and convert battery voltage
00529             bat_reading = (float)read_bat_volt();    
00530             bat_reading = (bat_reading * 3.6) / 1024.0;
00531             #if MyDebugEnb
00532             device.printf("bat reading: %f \r\n", bat_reading);
00533             #endif
00534             //write battery voltage
00535             uint8_t total_chars;
00536             memset(&bat_volt_char[0], 0, sizeof(bat_volt_char));      //clear out buffer
00537             //convert battery voltage float value to string reprsentation to 2 decimal places, and save the size of string.
00538             total_chars = sprintf (bat_volt_char, "%.2f", bat_reading);
00539             
00540             
00541             //read and convert analog voltage.  Comment out this section if note needed, saves some battery
00542             NRF_ADC->TASKS_STOP = 1;
00543             float analogreading;
00544             analogreading = (float)read_ADC_pin();
00545             analogreading = (analogreading * 3.6) / 1024.0;
00546             #if MyDebugEnb
00547             device.printf("separate analog reading: %.02f \r\n", analogreading);
00548             #endif
00549             
00550             //disable ADC to save power
00551             NRF_ADC->TASKS_STOP = 1;
00552             NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled;    //disable to shutdown ADC & lower bat consumption
00553 
00554 
00555             #if MyDebugEnb
00556             device.printf("char buff: %c%c%c%c \r\n", bat_volt_char[0], bat_volt_char[1], bat_volt_char[2], bat_volt_char[3]);
00557             device.printf("num chars: %d \r\n", total_chars);
00558             #endif
00559 
00560 
00561             //Generate "First Section" for ADV_Data so gateway will recognize our advertisement pattern
00562             hash_first_section(Adv_First_Section, mac_reverse, bat_volt_char);
00563 
00564 
00565             /* ****************************************
00566              * start writing out ADVData array
00567              * todo: this is easy to write but hard to read.  Maybe make it easy to read and hard to write?
00568              ******************************************/
00569             memset(&AdvData[0], 0, sizeof(AdvData));
00570             uint8_t JSON_loc=0; //AdvData[0]
00571 
00572             AdvData[0] = Adv_First_Section[0];          //"our device" flag, MAC[3]
00573             JSON_loc++; //JSON_loc == 1
00574             AdvData[1] = Adv_First_Section[1];          //"out device" flag, MAC[2]...
00575             JSON_loc++; //JSON_loc == 2
00576             AdvData[2] = Adv_First_Section[2];
00577             JSON_loc++; //JSON_loc == 3
00578             AdvData[3] = Adv_First_Section[3];
00579             JSON_loc++;  //JSON_loc == 4
00580             AdvData[4] = Adv_First_Section[4];
00581             JSON_loc++;  //JSON_loc == 5
00582             AdvData[5] = Adv_First_Section[5];
00583             JSON_loc++;  //JSON_loc == 6
00584             AdvData[6] = Adv_First_Section[6];
00585             JSON_loc++;
00586             AdvData[7] = Adv_First_Section[7];
00587             JSON_loc++;
00588             AdvData[8] = Adv_First_Section[8];
00589             JSON_loc++;
00590             AdvData[9] = Adv_First_Section[9];
00591             JSON_loc++;
00592 
00593             #if MyDebugEnb
00594                 device.printf("ADV first 10 array: ");
00595                 for (int i=0; i<10; i++)
00596                 {
00597                     device.printf("%x ", AdvData[i]);
00598                 }
00599                 device.printf("\r\n");
00600             #endif
00601 
00602 
00603             JSON_loc = 10;
00604             //Start of encrypted user data
00605             
00606             //[10] and [11] hold 2 bytes for how many seconds since birthday, little endian
00607             AdvData[10] = seconds_Old & 0xFF;
00608             JSON_loc++;
00609             AdvData[11] = (seconds_Old >> 8) & 0xFF;
00610             JSON_loc++;
00611             
00612             AdvData[12] = Xmit_Cnt;
00613             JSON_loc++;
00614             
00615             //start of jason data
00616             //"mag":
00617             JSON_loc = 13;
00618             AdvData[JSON_loc] = 0x22;       //ADV_Data[13] = "
00619             JSON_loc++; //14
00620             
00621             AdvData[JSON_loc] = 0x6d;       //ADV_Data[14] = m
00622             JSON_loc++; //15
00623             
00624             AdvData[JSON_loc] = 0x61;       //ADV_Data[15] = a
00625             JSON_loc++; //16
00626             
00627             AdvData[JSON_loc] = 0x67;       //ADV_Data[16] = g
00628             JSON_loc++; //17
00629             
00630             //for periodic calls, we want to add an extra mqtt level "p", using "/p"
00631             //to delineate between MQTT publishes from real world I/O interrupts vs timer interrupts
00632             if (Flag_Periodic_Call)
00633             {
00634                 AdvData[JSON_loc] = 0x2f;       // ADV_Data[17] = /
00635                 JSON_loc++;  //18
00636                 AdvData[JSON_loc] = 0x70;       // ADV_Data[18] =p
00637                 JSON_loc++;  //19
00638             }
00639             
00640             AdvData[JSON_loc] = 0x22;       //ADV_Data[17 or 19] = "   
00641             JSON_loc++; //20
00642 
00643             AdvData[JSON_loc] = 0x3a;       //ADV_Data[18 or 20] = :
00644             JSON_loc++; //21
00645             
00646             //convert magnet variable to string, for magnet sensor, this is easy
00647             //since we only have 1 or 0, but this also works for analog values
00648             memset(&buffer[0], 0, sizeof(buffer));      //clear out buffer
00649             total_chars = sprintf (buffer, "%d", magnet_near);    //returns total number of characters, which is 1 character.
00650             for (int i=0; i < total_chars; i++)
00651             {
00652                 AdvData[JSON_loc] = buffer[i];
00653                 JSON_loc++; //23
00654             } //JSON_loc left at location of next character
00655             
00656                         
00657             //AdvData[JSON_loc] = 0x0;    //since AdvData was cleared to start with, we don't need to null term
00658 
00659             ApplicationData_t appData;
00660             setupApplicationData(appData);
00661             
00662             /*********************
00663              * start encrypting last 16 bytes of ADV_Data
00664             *********************/
00665             for (int i=0; i<16; i++)
00666             {
00667                 src_buf[i] = AdvData[i+10]; //start of encrypted section is at AdvData[10]
00668             }
00669             nrf_ecb_init();
00670             nrf_ecb_set_key(key_buf);
00671             bool successful_ecb = nrf_ecb_crypt(des_buf, src_buf);
00672             #if MyDebugEnb
00673                 device.printf("success ecb = %d \r\n", successful_ecb);
00674                 device.printf("src_buf: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x \r\n", src_buf[0], src_buf[1], src_buf[2], src_buf[3], src_buf[4], src_buf[5], src_buf[6], src_buf[7], src_buf[8], src_buf[9], src_buf[10], src_buf[11], src_buf[12], src_buf[13], src_buf[14], src_buf[15]);
00675                 device.printf("des_buf: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x \r\n", des_buf[0], des_buf[1], des_buf[2], des_buf[3], des_buf[4], des_buf[5], des_buf[6], des_buf[7], des_buf[8], des_buf[9], des_buf[10], des_buf[11], des_buf[12], des_buf[13], des_buf[14], des_buf[15]);
00676             #endif
00677             for (int i=0; i<16; i++)  //replace last 16 bytes with encrypted 16 bytes
00678             {
00679                 AdvData[i+10] = des_buf[i];
00680             }
00681             
00682             //set payload for advertisement to our custom manufactured data.  First 5 bytes is BLE standard, last 26 bytes is our array
00683             //ble.gap().updateAdvertisingPayload(GapAdvertisingData::MANUFACTURER_SPECIFIC_DATA, (uint8_t *) &appData, sizeof(ApplicationData_t));
00684             ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::MANUFACTURER_SPECIFIC_DATA, AdvData, sizeof(AdvData));
00685             
00686             Flag_Update_IO = false;
00687             Flag_Periodic_Call = false;
00688             
00689             ble.gap().startAdvertising();
00690             Tic_Stop_Adv.attach(stop_adv_Callback, 3); /* trigger turn off advertisement after X seconds */
00691         
00692         }//end Flag_Update_IO
00693         
00694         
00695         if (Flag_Detach_Adv_Tic == true)    //ticker callback flag to stop advertising
00696         {
00697             ble.gap().stopAdvertising();    //may be safer to execute BLE operations in main
00698             Tic_Stop_Adv.detach();
00699             Flag_Detach_Adv_Tic = false;
00700         }
00701 
00702         
00703         ble.waitForEvent(); //sleeps until interrupt form ticker or I/O
00704     }//end forever while
00705 }//end main