Hardware Abstraction Layer, permitting any LoRa application to use any LoRa radio chip

Dependents:   alarm_slave alarm_master lora_p2p lorawan1v1 ... more

radio chip selection

Radio chip driver is not included, allowing choice of radio device.
If you're using SX1272 or SX1276, then import sx127x driver into your program.
if you're using SX1261 or SX1262, then import sx126x driver into your program.
if you're using SX1280, then import sx1280 driver into your program.
if you're using LR1110, then import LR1110 driver into your program.
If you're using NAmote72 or Murata discovery, then you must import only sx127x driver.
If you're using Type1SJ select target DISCO_L072CZ_LRWAN1 and import sx126x driver into your program.

Pin assigned to arduino LoRa radio shield form-factor

radio_sx128x.cpp

Committer:
Wayne Roberts
Date:
2018-07-05
Revision:
0:9c052ff8dd6a
Child:
1:e79b0a55135f

File content as of revision 0:9c052ff8dd6a:

#include "radio.h"
#ifdef SX128x_H 
#include "SPIu.h"
#include <float.h>

#ifdef TARGET_FF_ARDUINO    /* pins of SX126xDVK1xAS board */
    SPIu spi(D11, D12, D13); // mosi, miso, sclk
    //           spi, nss, busy, dio1
    SX128x Radio::radio(spi,  D7,   D3,   D5 );

    #define LED_ON      1
    #define LED_OFF     0
    DigitalOut tx_led(A4);
    DigitalOut rx_led(A5);

    #define NRST_PIN        A0

    DigitalOut ant_sw(A3);
    DigitalOut cps(D6); // SE2436L

    bool fe_enable; // SE2436L

    void Radio::chipModeChange()
    {
        if (radio.chipMode == CHIPMODE_NONE) {
            cps = 0;
            tx_led = LED_OFF;
            rx_led = LED_OFF;
        } else if (radio.chipMode == CHIPMODE_TX) {
            cps = fe_enable;
            tx_led = LED_ON;
            rx_led = LED_OFF;
        } else if (radio.chipMode == CHIPMODE_RX) {
            cps = fe_enable;
            tx_led = LED_OFF;
            rx_led = LED_ON;
        }
    }
#endif /* TARGET_FF_ARDUINO */

#ifdef TARGET_FF_MORPHO
    DigitalOut pc3(PC_3);   // debug RX indication, for nucleo boards
#endif /* TARGET_FF_MORPHO */


LowPowerTimer Radio::lpt;
RadioModems_t Radio::_m_;

PacketParams_t Radio::ppGFSK;
PacketParams_t Radio::ppLORA;
PacketParams_t Radio::ppFLRC;

ModulationParams_t Radio::mpBLE_GFSK;
ModulationParams_t Radio::mpFLRC;
ModulationParams_t Radio::mpLORA;

const RadioEvents_t* RadioEvents;
volatile us_timestamp_t Radio::irqAt;

void Radio::readChip()
{
    uint8_t reg8;

    reg8 = radio.readReg(REG_ADDR_PKTCTRL0, 1);
    ppGFSK.gfskFLRC.HeaderType = reg8 & 0x20;
    ppFLRC.gfskFLRC.HeaderType = reg8 & 0x20;

    reg8 = radio.readReg(REG_ADDR_PKTCTRL1, 1);
    ppGFSK.gfskFLRC.PreambleLength = reg8 & 0x70;
    ppFLRC.gfskFLRC.PreambleLength = reg8 & 0x70;
    ppGFSK.gfskFLRC.SyncWordLength = reg8 & 0x0e;
    ppFLRC.gfskFLRC.SyncWordLength = reg8 & 0x06;
    if (ppFLRC.gfskFLRC.SyncWordLength == 0x06)
        ppFLRC.gfskFLRC.SyncWordLength = FLRC_SYNC_WORD_LEN_P32S;

    reg8 = radio.readReg(REG_ADDR_PKT_SYNC_ADRS_CTRL, 1);
    ppGFSK.gfskFLRC.SyncWordMatch = reg8 & 0x70;
    ppFLRC.gfskFLRC.SyncWordMatch = reg8 & 0x70;

    reg8 = radio.readReg(REG_ADDR_PAYLOAD_LEN, 1);
    ppGFSK.gfskFLRC.PayloadLength = reg8;
    ppFLRC.gfskFLRC.PayloadLength = reg8;

    reg8 = radio.readReg(REG_ADDR_PKT_TX_HEADER, 1);    // TODO hi bit of payload length
    //ppBLE.ble.ConnectionState = reg8 & 0xe0;
    //ppBLE.ble.BleTestPayload = reg8 & 0x1c;

    reg8 = radio.readReg(REG_ADDR_PKT_BITSTREAM_CTRL, 1);
    //ppBLE.ble.CrcLength = reg8 & 0x30;
    //ppBLE.ble.Whitening = reg8 & 0x08;
    ppGFSK.gfskFLRC.CRCLength = reg8 & 0x30;
    ppFLRC.gfskFLRC.CRCLength = reg8 & 0x30;
    ppGFSK.gfskFLRC.Whitening = reg8 & 0x08;
    ppFLRC.gfskFLRC.Whitening = reg8 & 0x08;

    {
        LoRaPktPar0_t LoRaPktPar0;
        LoRaPktPar0.octet = radio.readReg(REG_ADDR_LORA_PKTPAR0, 1);
        switch (LoRaPktPar0.bits.modem_bw) {
            case 2: mpLORA.lora.bandwidth = LORA_BW_200; break;
            case 3: mpLORA.lora.bandwidth = LORA_BW_400; break;
            case 4: mpLORA.lora.bandwidth = LORA_BW_800; break;
            case 5: mpLORA.lora.bandwidth = LORA_BW_1600; break;
        }
        mpLORA.lora.spreadingFactor = LoRaPktPar0.bits.modem_sf << 4;
    }

    {
        LoRaPktPar1_t LoRaPktPar1;
        LoRaPktPar1.octet = radio.readReg(REG_ADDR_LORA_PKTPAR1, 1);
        mpLORA.lora.codingRate = LoRaPktPar1.bits.coding_rate;
        ppLORA.lora.InvertIQ = LoRaPktPar1.bits.rxinvert_iq;
        ppLORA.lora.HeaderType = LoRaPktPar1.bits.implicit_header;
        // LoRaPktPar1.bits.ppm_offset
    }

    {
        LoRaPreambleReg_t LoRaPreambleReg;
        LoRaPreambleReg.octet = radio.readReg(REG_ADDR_LORA_PREAMBLE, 1);
        ppLORA.lora.PreambleLength = LoRaPreambleReg.bits.preamble_symb1_nb * (1 << LoRaPreambleReg.bits.preamble_symb_nb_exp);
    }
    ppLORA.lora.PayloadLength = radio.readReg(REG_ADDR_LORA_TX_PAYLOAD_LENGTH, 1);

    {
        LoRaLrCtl_t LoRaLrCtl;
        LoRaLrCtl.octet = radio.readReg(REG_ADDR_LORA_LRCTL, 1);
        ppLORA.lora.crc = LoRaLrCtl.octet & 0x20; // LoRaLrCtl.bits.crc_en
    }

    {
        RegRxBw_t RegRxBw;
        unsigned bps;
        FloraPreambleHi_t FloraPreambleHi;
        float mi, fdev_hz;
        unsigned freqDev;
        FskModDfH_t FskModDfH;
        FskModDfH.octet = radio.readReg(REG_ADDR_FSK_MODDFH, 1);
        freqDev = FskModDfH.bits.freqDev;
        freqDev <<= 8;
        freqDev |= radio.readReg(REG_ADDR_FSK_MODDFL, 1);
        fdev_hz = freqDev * PLL_STEP_HZ;

        FloraPreambleHi.octet = radio.readReg(REG_ADDR_FLORA_PREAMBLE_HI, 1);
        switch (FloraPreambleHi.bits.data_rate) {
            case 0:
                bps = 2.0e6;
                //mpFLRC.flrc.bitrateBandwidth = ??; // 2.6
                break;
            case 1:
                bps = 1.6e6;
                //mpFLRC.flrc.bitrateBandwidth = ??; // 2.08
                break;
            case 2:
                bps = 1.0e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_1_300_BW_1_2; // 1.3
                break;
            case 3:
                bps = 0.8e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_1_000_BW_1_2; // 1.04
                break;
            case 4:
                bps = 0.5e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_0_650_BW_0_6; // 0.65
                break;
            case 5:
                bps = 0.4e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_0_520_BW_0_6; // 0.52
                break;
            case 6:
                bps = 0.25e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_0_325_BW_0_3; // 0.325
                break;
            case 7:
                bps = 0.125e6;
                mpFLRC.flrc.bitrateBandwidth = FLRC_BR_0_260_BW_0_3; // 0.26
                break;
        }

        mi = (fdev_hz * 2.0) / bps;
        if (mi > 0.35) {
            mi -= 0.5;
            mi /= 0.25;
            mpBLE_GFSK.gfskBle.ModulationIndex = ((uint8_t)mi) + 1;
        } else
            mpBLE_GFSK.gfskBle.ModulationIndex = 0;

        RegRxBw.octet = radio.readReg(REG_ADDR_RXBW, 1);

        switch (RegRxBw.bits.bw) {
            case 0:
                if (FloraPreambleHi.bits.data_rate == 0)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_2_000_BW_2_4;
                if (FloraPreambleHi.bits.data_rate == 1)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_1_600_BW_2_4;
                if (FloraPreambleHi.bits.data_rate == 2)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_1_000_BW_2_4;
                if (FloraPreambleHi.bits.data_rate == 3)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_800_BW_2_4;
                break;
            case 1:
                if (FloraPreambleHi.bits.data_rate == 2)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_1_000_BW_1_2;
                if (FloraPreambleHi.bits.data_rate == 3)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_800_BW_1_2;
                if (FloraPreambleHi.bits.data_rate == 4)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_500_BW_1_2;
                if (FloraPreambleHi.bits.data_rate == 5)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_400_BW_1_2;
                break;
            case 2:
                if (FloraPreambleHi.bits.data_rate == 4)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_500_BW_0_6;
                if (FloraPreambleHi.bits.data_rate == 5)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_400_BW_0_6;
                if (FloraPreambleHi.bits.data_rate == 6)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_250_BW_0_6;
                break;
            case 3:
                if (FloraPreambleHi.bits.data_rate == 6)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_250_BW_0_3;
                if (FloraPreambleHi.bits.data_rate == 7)
                    mpBLE_GFSK.gfskBle.bitrateBandwidth = GFSK_BLE_BR_0_125_BW_0_3;
                break;
        }
        mpBLE_GFSK.gfskBle.bitrateBandwidth = reg8;
    }

    {
        FskCfg_t FskCfg;
        FskCfg.octet = radio.readReg(REG_ADDR_FSK_CFG, 1);
        mpBLE_GFSK.gfskBle.ModulationShaping = FskCfg.bits.gf_bt << 4;
        mpFLRC.flrc.ModulationShaping = mpBLE_GFSK.gfskBle.ModulationShaping;
    }

    {
        PktBitStreamCtrl_t PktBitStreamCtrl;
        PktBitStreamCtrl.octet = radio.readReg(REG_ADDR_PKT_BITSTREAM_CTRL, 1);
        mpFLRC.flrc.CodingRate = PktBitStreamCtrl.octet & 0x06; // PktBitStreamCtrl.bits.flora_coding_rate 
    }

}

void Radio:: diox_top_half()
{
    irqAt = lpt.read_us();

    if (radio.chipMode == CHIPMODE_TX) {
        /* TxDone handling requires low latency */
        if (RadioEvents->TxDone_topHalf) {
            RadioEvents->TxDone_topHalf();
        }
    }
#ifdef TARGET_FF_MORPHO
    else
        pc3 = 0;
#endif /* TARGET_FF_MORPHO */
}

void Radio::rxDone(uint8_t size, const pktStatus_t* pktStatus)
{
    float rssi, snr;

    if (pktStatus->ble_gfsk_flrc.sync.syncAddrsCode == 0) {
        int8_t s = pktStatus->lora.snr;
        rssi = -pktStatus->lora.rssiSync / 2.0;
        snr = s / 4.0;
    } else {
        rssi = -pktStatus->ble_gfsk_flrc.rssiSync / 2.0;
        snr = FLT_MIN;
    }

    RadioEvents->RxDone(size, rssi, snr);
}

void Radio::timeout_callback(bool tx)
{
    if (!tx) {
        if (RadioEvents->RxTimeout)
            RadioEvents->RxTimeout();
#ifdef TARGET_FF_MORPHO
        pc3 = 0;
#endif /* TARGET_FF_MORPHO */
    } // else TODO tx timeout
}

void Radio::txDoneBottom()
{
    if (RadioEvents->TxDone_botHalf)
        RadioEvents->TxDone_botHalf();
}

void Radio::Init(const RadioEvents_t* e)
{
    uint64_t sa;

    radio.txDone = txDoneBottom;
    radio.rxDone = rxDone;
    radio.timeout = timeout_callback;
    radio.chipModeChange = chipModeChange;
    radio.diox_topHalf = diox_top_half;

    readChip();

    radio.setRegulator(0);  // default to LDO

    sa = 0xc194c1;
    radio.setSyncAddr(1, sa);

    RadioEvents = e;
    lpt.start();

    fe_enable = true;

    radio.periodBase = 2;   // 1ms resolution
}

int Radio::Send(uint8_t size, timestamp_t maxListenTime, timestamp_t channelFreeTime, int rssiThresh)
{
    uint8_t buf[8];

    if (_m_ == MODEM_FSK) {
        ppGFSK.gfskFLRC.PayloadLength = size;
        radio.xfer(OPCODE_SET_PACKET_PARAMS, 7, 0, ppGFSK.buf);
    } else if (_m_ == MODEM_LORA) {
        ppLORA.lora.PayloadLength = size;
        radio.xfer(OPCODE_SET_PACKET_PARAMS, 5, 0, ppLORA.buf);
    }

    if (maxListenTime > 0) {
        int rssi;
        us_timestamp_t startAt, chFreeAt, now;
        radio.start_rx(-1);
        startAt = lpt.read_us();
Lstart:
        do {
            now = lpt.read_us();
            if ((now - startAt) > maxListenTime) {
                return -1;
            }
            radio.xfer(OPCODE_GET_RSSIINST, 0, 2, buf);
            rssi = buf[1] / -2;
        } while (rssi > rssiThresh);
        chFreeAt = lpt.read_us();
        do {
            now = lpt.read_us();
            radio.xfer(OPCODE_GET_RSSIINST, 0, 2, buf);
            rssi = buf[1] / -2;
            if (rssi > rssiThresh) {
                goto Lstart;
            }
        } while ((now - chFreeAt) < channelFreeTime);
    }

    radio.start_tx(size, 4000);

    return 0;
}

void Radio::service()
{
    radio.service();
}

bool Radio::CheckRfFrequency(unsigned hz)
{
    return true;
}

void Radio::Sleep()
{
    radio.setSleep(true);
}

void Radio::SetPublicNetwork(bool en)
{
    uint16_t ppg;

    if (en)
        ppg = 0x3444;
    else
        ppg = 0x1424;

    radio.writeReg(REG_ADDR_LORA_SYNC, ppg, 2);
}

uint32_t Radio::lora_toa_us( uint8_t pktLen )
{
    double bwKHz;
    LoRaPktPar0_t LoRaPktPar0;
    LoRaLrCtl_t LoRaLrCtl;
    LoRaPktPar1_t LoRaPktPar1;
    uint8_t LowDatarateOptimize;

    {
        LoRaPktPar1.octet = radio.readReg(REG_ADDR_LORA_PKTPAR1, 1);
        LowDatarateOptimize = LoRaPktPar1.bits.ppm_offset ? 1 : 0;
        ppLORA.lora.HeaderType = LoRaPktPar1.bits.implicit_header;
        ppLORA.lora.InvertIQ = LoRaPktPar1.bits.rxinvert_iq;
        mpLORA.lora.codingRate = LoRaPktPar1.bits.coding_rate;
    }

    {
        LoRaLrCtl.octet = radio.readReg(REG_ADDR_LORA_LRCTL, 1);
        ppLORA.lora.crc = LoRaLrCtl.octet & 0x20; // LoRaLrCtl.bits.crc_en
    }

    {
        LoRaPreambleReg_t LoRaPreambleReg;
        LoRaPreambleReg.octet = radio.readReg(REG_ADDR_LORA_PREAMBLE, 1);
        ppLORA.lora.PreambleLength = LoRaPreambleReg.bits.preamble_symb1_nb * (1 << LoRaPreambleReg.bits.preamble_symb_nb_exp);
    }

    {
        LoRaPktPar0.octet = radio.readReg(REG_ADDR_LORA_PKTPAR0, 1);
        switch (LoRaPktPar0.bits.modem_bw) {
            case 0: bwKHz = 50; break;
            case 1: bwKHz = 100; break;
            case 2: mpLORA.lora.bandwidth = LORA_BW_200; bwKHz = 200; break;
            case 3: mpLORA.lora.bandwidth = LORA_BW_400; bwKHz = 400; break;
            case 4: mpLORA.lora.bandwidth = LORA_BW_800; bwKHz = 800; break;
            case 5: mpLORA.lora.bandwidth = LORA_BW_1600; bwKHz = 1600; break;
            default: bwKHz = 0; break;
        }
        mpLORA.lora.spreadingFactor = LoRaPktPar0.bits.modem_sf << 4;
    }

    // Symbol rate : time for one symbol (secs)
    double rs = bwKHz / (1 << LoRaPktPar0.bits.modem_sf);
    double ts = 1 / rs;
    // time of preamble
    //
    double tPreamble = ( ppLORA.lora.PreambleLength + 4.25 ) * ts;
    // Symbol length of payload and time
    
    double tmp = ceil( ( 8 * pktLen - 4 * LoRaPktPar0.bits.modem_sf +
                         28 + 16 * LoRaLrCtl.bits.crc_en -
                         ( LoRaPktPar1.bits.implicit_header ? 20 : 0 ) ) /
                         ( double )( 4 * ( LoRaPktPar0.bits.modem_sf -
                         ( ( LowDatarateOptimize > 0 ) ? 2 : 0 ) ) ) ) *
                         ( LoRaPktPar1.bits.coding_rate + 4 );

    double nPayload = 8 + ( ( tmp > 0 ) ? tmp : 0 );
    double tPayload = nPayload * ts;
    // Time on air
    double tOnAir = tPreamble + tPayload;
    // return microseconds
    return floor( tOnAir * 1000 + 0.999 );
}

void Radio::GFSKModemConfig(unsigned bps, unsigned bw_hz, unsigned fdev_hz)
{
    uint8_t u8;
    float mi, Mbps = bps / 1000000.0;

    if (Mbps > 1.6) {
        /* 2.0Mbps */
        u8 = GFSK_BLE_BR_2_000_BW_2_4;
    } else if (Mbps > 1.0) {
        /* 1.6Mbps */
        u8 = GFSK_BLE_BR_1_600_BW_2_4;
    } else if (Mbps > 0.8) {
        /* 1.0Mbps */
        /*if (bwMHz > 1.2)
            u8 = GFSK_BLE_BR_1_000_BW_2_4;
        else*/
            u8 = GFSK_BLE_BR_1_000_BW_1_2;
    } else if (Mbps > 0.5) {
        /* 0.8Mbps */
        /*if (bwMHz > 1.2)
            u8 = GFSK_BLE_BR_0_800_BW_2_4;
        else*/
            u8 = GFSK_BLE_BR_0_800_BW_1_2;
    } else if (Mbps > 0.4) {
        /* 0.5Mbps */
        /*if (bwMHz > 0.6)
            u8 = GFSK_BLE_BR_0_500_BW_1_2;
        else*/
            u8 = GFSK_BLE_BR_0_500_BW_0_6;
    } else if (Mbps > 0.25) {
        /* 0.4Mbps */
        /*if (bwMHz > 0.6)
            u8 = GFSK_BLE_BR_0_400_BW_1_2;
        else*/
            u8 = GFSK_BLE_BR_0_400_BW_0_6;
    } else if (Mbps > 0.125) {
        /* 0.25Mbps */
        /*if (bwMHz > 0.3)
            u8 = GFSK_BLE_BR_0_250_BW_0_6;
        else*/
            u8 = GFSK_BLE_BR_0_250_BW_0_3;
    } else {
        /* 0.125Mbps */
        u8 = GFSK_BLE_BR_0_125_BW_0_3;
    }

    mpBLE_GFSK.gfskBle.bitrateBandwidth = u8;

    mpBLE_GFSK.gfskBle.ModulationShaping = BT_OFF;

    mi = (fdev_hz * 2.0) / bps;
    if (mi > 0.35) {
        mi -= 0.5;
        mi /= 0.25;
        mpBLE_GFSK.gfskBle.ModulationIndex = ((uint8_t)mi) + 1;
    } else
        mpBLE_GFSK.gfskBle.ModulationIndex = 0;

    radio.xfer(OPCODE_SET_MODULATION_PARAMS, 3, 0, mpBLE_GFSK.buf);
}

void Radio::GFSKPacketConfig(unsigned preambleLen, bool fixLen, bool crcOn)
{
    ppGFSK.gfskFLRC.PreambleLength = (preambleLen - 4) / 4;
    ppGFSK.gfskFLRC.PreambleLength <<= 4;
    ppGFSK.gfskFLRC.SyncWordLength = (3 - 1) << 1;  // 3 byte 0xc194c1
    ppGFSK.gfskFLRC.HeaderType = fixLen ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
    ppGFSK.gfskFLRC.CRCLength = crcOn ? RADIO_CRC_2_BYTES : RADIO_CRC_OFF;

    // TODO ppGFSK.gfskFLRC.PayloadLength = ;

    radio.xfer(OPCODE_SET_PACKET_PARAMS, 7, 0, ppGFSK.buf);
}

void Radio::SetLoRaSymbolTimeout(uint8_t symbs)
{
    //symbolTimeout = symbs;
}

void Radio::LoRaModemConfig(unsigned bwKHz, uint8_t sf, uint8_t cr)
{
    if (bwKHz > 800)
        mpLORA.lora.bandwidth = LORA_BW_1600;
    if (bwKHz > 400)
        mpLORA.lora.bandwidth = LORA_BW_800;
    if (bwKHz > 200)
        mpLORA.lora.bandwidth = LORA_BW_400;
    else
        mpLORA.lora.bandwidth = LORA_BW_200;

    mpLORA.lora.codingRate = cr;

    mpLORA.lora.spreadingFactor = sf << 4;

    radio.xfer(OPCODE_SET_MODULATION_PARAMS, 3, 0, mpLORA.buf);
}

void Radio::LoRaPacketConfig(unsigned preambleLen, bool fixLen, bool crcOn, bool invIQ)
{
    ppLORA.lora.PreambleLength = preambleLen;
    ppLORA.lora.HeaderType = fixLen ? IMPLICIT_HEADER : EXPLICIT_HEADER;
    ppLORA.lora.crc = crcOn ? LORA_CRC_ENABLE : LORA_CRC_DISABLE;
    ppLORA.lora.InvertIQ = invIQ ? LORA_IQ_INVERTED : LORA_IQ_STD;

    radio.xfer(OPCODE_SET_PACKET_PARAMS, 5, 0, ppLORA.buf);
}

void Radio::SetChannel(unsigned hz)
{
    radio.setMHz(hz / 1000000.0);
}

uint32_t Radio::Random(void)
{
    uint8_t buf[2];
    uint32_t ret = 0;
    unsigned n;

    radio.start_rx(-1);

    for (n = 0; n < 8; n++) {
        uint32_t r, s;
        wait_us(5000);
        radio.xfer(OPCODE_GET_RSSIINST, 0, 2, buf);
        r = buf[1];
        s = n * 4;
        r <<= s;
        ret ^= r;
    }

    radio.setStandby(STDBY_RC);

    return ret;
}

void Radio::Rx(unsigned timeout)
{
    radio.start_rx(timeout / 1000);
}

void Radio::Standby()
{
    radio.setStandby(STDBY_RC);
}

void Radio::set_tx_dbm(int8_t dbm)
{
    radio.set_tx_dbm(dbm);
}

void Radio::SetTxContinuousWave(unsigned hz, int8_t dbm, unsigned timeout_us)
{
    SetChannel(hz);
    radio.set_tx_dbm(dbm);
    radio.xfer(OPCODE_SET_TX_CARRIER, 0, 0, NULL);
}

void Radio::SetRxMaxPayloadLength(RadioModems_t modem, uint8_t max)
{
    if (_m_ == MODEM_FSK) {
        ppGFSK.gfskFLRC.PayloadLength = max;
    } else if (_m_ == MODEM_LORA) {
        ppLORA.lora.PayloadLength = max;
    }
}

#endif /* ..SX126x_H */