mbed_app.json configured to operate on senet

To enable cayenne, edit mbed_app.json, assign pins for desired function

Example:

        "cayenne": {
            "help": "compile main_cayenne.cpp instead of main.cpp",
            "value": 1
        },
        "analog_in_pin": {
            "help": "PA_0, PA_4, PA_5",
            "value": "PA_0"
        },
        "analog_out_pin": {
            "help": "PA_0, PB_5, PB_10, PB_11",
            "value": "PB_11"
        },
        "_digital_out_pin": {
            "help": "",
            "value": ""
        }

main_cayenne.cpp

Committer:
dudmuck
Date:
2020-05-04
Revision:
61:9a84b5964019

File content as of revision 61:9a84b5964019:

/**
 * Copyright (c) 2017, Arm Limited and affiliates.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifdef MBED_CONF_APP_CAYENNE

#include <stdio.h>

#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"

// Application helpers
#include "trace_helper.h"
#include "lora_radio_helper.h"
#include "mbed.h"

using namespace events;

// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[30];
uint8_t rx_buffer[30];

/*
 * Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
 */
#define TX_TIMER                        10000

/**
 * Maximum number of events for the event queue.
 * 10 is the safe number for the stack events, however, if application
 * also uses the queue for whatever purposes, this number should be increased.
 */
#define MAX_NUMBER_OF_EVENTS            10

/**
 * Maximum number of retries for CONFIRMED messages before giving up
 */
#define CONFIRMED_MSG_RETRY_COUNTER     3

/* https://developers.mydevices.com/cayenne/docs/lora/#lora-cayenne-low-power-payload-reference-implementation-cayenne-lpp-cc-constants-definitions
 */

#define LPP_DIGITAL_INPUT       0       // 1 byte
#define LPP_DIGITAL_OUTPUT      1       // 1 byte
#define LPP_ANALOG_INPUT        2       // 2 bytes, 0.01 signed
#define LPP_ANALOG_OUTPUT       3       // 2 bytes, 0.01 signed
#define LPP_LUMINOSITY          101     // 2 bytes, 1 lux unsigned
#define LPP_PRESENCE            102     // 1 byte, 1
#define LPP_TEMPERATURE         103     // 2 bytes, 0.1°C signed
#define LPP_RELATIVE_HUMIDITY   104     // 1 byte, 0.5% unsigned
#define LPP_ACCELEROMETER       113     // 2 bytes per axis, 0.001G
#define LPP_BAROMETRIC_PRESSURE 115     // 2 bytes 0.1 hPa Unsigned
#define LPP_GYROMETER           134     // 2 bytes per axis, 0.01 °/s
#define LPP_GPS                 136     // 3 byte lon/lat 0.0001 °, 3 bytes alt 0.01m
 
 
// Data ID + Data Type + Data Size
#define LPP_DIGITAL_INPUT_SIZE       3
#define LPP_DIGITAL_OUTPUT_SIZE      3
#define LPP_ANALOG_INPUT_SIZE        4
#define LPP_ANALOG_OUTPUT_SIZE       4
#define LPP_LUMINOSITY_SIZE          4
#define LPP_PRESENCE_SIZE            3
#define LPP_TEMPERATURE_SIZE         4
#define LPP_RELATIVE_HUMIDITY_SIZE   3
#define LPP_ACCELEROMETER_SIZE       8
#define LPP_BAROMETRIC_PRESSURE_SIZE 4
#define LPP_GYROMETER_SIZE           8

#define CAYENNE_CH_DOUT     2
#define CAYENNE_CH_AOUT     3
#define CAYENNE_CH_TEMP     0
#ifdef MBED_CONF_APP_ANALOG_IN_PIN
    AnalogIn a_in(MBED_CONF_APP_ANALOG_IN_PIN);
    #define CAYENNE_CH_ANALOG_IN      1
#endif

#ifdef MBED_CONF_APP_DIGITAL_OUT_PIN  
    DigitalOut dig_out(MBED_CONF_APP_DIGITAL_OUT_PIN);
#endif /* MBED_CONF_APP_DIGITAL_OUT_PIN */
#ifdef MBED_CONF_APP_ANALOG_OUT_PIN                
    PwmOut pwm(MBED_CONF_APP_ANALOG_OUT_PIN);
#endif /* MBED_CONF_APP_ANALOG_OUT_PIN */

volatile int cayenne_ack_ch;


/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS *EVENTS_EVENT_SIZE);

/**
 * Event handler.
 *
 * This will be passed to the LoRaWAN stack to queue events for the
 * application which in turn drive the application.
 */
static void lora_event_handler(lorawan_event_t event);

/**
 * Constructing Mbed LoRaWANInterface and passing it the radio object from lora_radio_helper.
 */
static LoRaWANInterface lorawan(radio);

/**
 * Application specific callbacks
 */
static lorawan_app_callbacks_t callbacks;

/**
 * Entry point for application
 */
int main(void)
{
    // setup tracing
    setup_trace();

    // stores the status of a call to LoRaWAN protocol
    lorawan_status_t retcode;

    // Initialize LoRaWAN stack
    if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
        printf("\r\n LoRa initialization failed! \r\n");
        return -1;
    }

    printf("\r\n Mbed LoRaWANStack initialized \r\n");

    // prepare application callbacks
    callbacks.events = mbed::callback(lora_event_handler);
    lorawan.add_app_callbacks(&callbacks);

    // Set number of retries in case of CONFIRMED messages
    if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
            != LORAWAN_STATUS_OK) {
        printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
        return -1;
    }

    printf("\r\n CONFIRMED message retries : %d \r\n",
           CONFIRMED_MSG_RETRY_COUNTER);

    // Enable adaptive data rate
    if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
        printf("\r\n enable_adaptive_datarate failed! \r\n");
        return -1;
    }

    printf("\r\n Adaptive data  rate (ADR) - Enabled \r\n");

    retcode = lorawan.connect();

    if (retcode == LORAWAN_STATUS_OK ||
            retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
    } else {
        printf("\r\n Connection error, code = %d \r\n", retcode);
        return -1;
    }

    printf("\r\n Connection - In Progress ...\r\n");

    // make your event queue dispatching events forever
    ev_queue.dispatch_forever();

    return 0;
}

/**
 * Sends a message to the Network Server
 */
static void send_message()
{
    uint16_t packet_len = 0;
    int16_t retcode;
    int32_t sensor_value;
    
    if (cayenne_ack_ch != -1) {
        switch (cayenne_ack_ch) {
            tx_buffer[packet_len++] = cayenne_ack_ch;
#ifdef MBED_CONF_APP_DIGITAL_OUT_PIN  
            case CAYENNE_CH_DOUT:
                tx_buffer[packet_len++] = LPP_DIGITAL_OUTPUT;
                tx_buffer[packet_len++] = dig_out.read();
                printf("digitalOut-ack%u\r\n", dig_out.read());
                break;
#endif /* MBED_CONF_APP_DIGITAL_OUT_PIN */
#ifdef MBED_CONF_APP_ANALOG_OUT_PIN                
            case CAYENNE_CH_AOUT:
                tx_buffer[packet_len++] = LPP_ANALOG_OUTPUT;
                {
                    uint16_t u16 = pwm.read() * 100;
                    tx_buffer[packet_len++] = u16 >> 8;
                    tx_buffer[packet_len++] = u16;
                    printf("pwmAck:%x\r\n", u16);
                }
                break;
#endif /* MBED_CONF_APP_ANALOG_OUT_PIN */
        }
        cayenne_ack_ch = -1;
    }    

#ifdef MBED_CONF_APP_ANALOG_IN_PIN
    {
        uint16_t rot, u16 = a_in.read_u16();
        float f = u16 / 198.6;    // scale 65535/3.3 to 0.01v per bit
        tx_buffer[packet_len++] = CAYENNE_CH_ANALOG_IN;
        tx_buffer[packet_len++] = LPP_ANALOG_INPUT;
        rot = (uint16_t) f;
        tx_buffer[packet_len++] = rot >> 8;
        tx_buffer[packet_len++] = rot;
        printf("analog_in:%u -> %04x\r\n", u16, rot);
    }
#endif /* MBED_CONF_APP_ANALOG_IN_PIN */

    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
                           MSG_UNCONFIRMED_FLAG);

    if (retcode < 0) {
        retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
        : printf("\r\n send() - Error code %d \r\n", retcode);

        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
            //retry in 3 seconds
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                ev_queue.call_in(3000, send_message);
            }
        }
        return;
    }

    printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
    memset(tx_buffer, 0, sizeof(tx_buffer));
}

/**
 * Receive a message from the Network Server
 */
static void receive_message()
{
    uint8_t port;
    int flags;
    int16_t retcode = lorawan.receive(rx_buffer, sizeof(rx_buffer), port, flags);

    if (retcode < 0) {
        printf("\r\n receive() - Error code %d \r\n", retcode);
        return;
    }

    printf(" RX Data on port %u (%d bytes): ", port, retcode);
    for (uint8_t i = 0; i < retcode; i++) {
        printf("%02x ", rx_buffer[i]);
    }
    printf("\r\n");
    
    {
        unsigned n;
        for (n = 0; n < retcode; n += 4) {
            uint16_t val = rx_buffer[n+1] << 8;
            val += rx_buffer[n+2];
            cayenne_ack_ch = rx_buffer[n];
            switch (rx_buffer[n]) {
                case CAYENNE_CH_DOUT:
    #ifdef MBED_CONF_APP_DIGITAL_OUT_PIN  
                    dig_out.write(val);
                    printf("digitalOut write%u\r\n", val);
    #endif /* MBED_CONF_APP_DIGITAL_OUT_PIN */
                    break;
                case CAYENNE_CH_AOUT:
    #ifdef MBED_CONF_APP_ANALOG_OUT_PIN                
                    pwm.write(val / 100.0);
                    printf("PWM-write_%x\r\n", val);
    #endif /* MBED_CONF_APP_ANALOG_OUT_PIN */
                    break;
                default:
                    break;
            }
        }
    }
    
    memset(rx_buffer, 0, sizeof(rx_buffer));
}

/**
 * Event handler
 */
static void lora_event_handler(lorawan_event_t event)
{
    switch (event) {
        case CONNECTED:
            cayenne_ack_ch = -1;
            printf("\r\n Connection - Successful \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            } else {
                ev_queue.call_every(TX_TIMER, send_message);
            }

            break;
        case DISCONNECTED:
            ev_queue.break_dispatch();
            printf("\r\n Disconnected Successfully \r\n");
            break;
        case TX_DONE:
            printf("\r\n Message Sent to Network Server \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case TX_TIMEOUT:
        case TX_ERROR:
        case TX_CRYPTO_ERROR:
        case TX_SCHEDULING_ERROR:
            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
            // try again
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case RX_DONE:
            printf("\r\n Received message from Network Server \r\n");
            receive_message();
            break;
        case RX_TIMEOUT:
        case RX_ERROR:
            printf("\r\n Error in reception - Code = %d \r\n", event);
            break;
        case JOIN_FAILURE:
            printf("\r\n OTAA Failed - Check Keys \r\n");
            break;
        case UPLINK_REQUIRED:
            printf("\r\n Uplink required by NS \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        default:
            MBED_ASSERT("Unknown Event");
    }
}

// EOF
#endif /* MBED_CONF_APP_CAYENNE */