
repeat message down a chain, adding to the payload at each repeating device
radio chip selection
Radio chip driver is not included, because options are available.
If you're using SX1272 or SX1276, then import sx127x driver into your program.
if you're using SX1261 or SX1262, then import sx126x driver into your program.
if you're using SX1280, then import sx1280 driver into your program.
If you're using NAmote72 or Murata discovery, then you must import only sx127x driver.
network architecture
UNIT 0x00
transmitting only device: mandatory.UNIT 0x01
: repeating device- Uni-directional network: Each unit can only receive message from
UNIT_ID - 1
(previous unit) UINT n
receiving only deviceLAST_UNIT
: mandatory; prints payload onto UART.
configuration
Each device in the network is uniquely identified by:
UNIT_ID
: ID byte designating address of this device.UNIT_LAST
: If defined, this device prints payload onto serial port instead of re-transmitting payload.
All devices in network must be configured identically with the following:
TX_INTERVAL_US
: how often to take measurement and send toUNIT_ID+1
(time of complete cycle).MAX_TX_LENGTH
: Maximum size of payload, in bytes. Payload is sent in fragments when exceeds this value; aka size of each fragment.TXRX_PADDING_US
: Time allotted for RX-TX turnaround and CPU overheadMAX_TX_ATTEMPTS
: Count of transmit retries permittedSPREADING_FACTOR
LoRa configuration of datarateCF_MHZ
: Operating radio frequency
Duration of retry interval is auto-calculated from LoRa modem configuration (bandwidth/sf) and MAX_TX_LENGTH
.
Take care that TX_INTERVAL_US
value is appropriate relative to total retry interval (interval * MAX_TX_ATTEMPTS
)
main.cpp
- Committer:
- Wayne Roberts
- Date:
- 2019-09-16
- Revision:
- 5:62c9ddaa5ea6
- Parent:
- 4:f272bf72893a
File content as of revision 5:62c9ddaa5ea6:
#include "radio.h" #define UNIT_ID 0x00 /* 0x00: first unit */ //#define UNIT_LAST // test large sample, large pkt size #define N_SMP 10 typedef struct __attribute__((__packed__)) msg { uint8_t unit_id; uint8_t flags; uint16_t sample; #ifdef N_SMP uint16_t samples[N_SMP]; #endif } message_t; #define TX_INTERVAL_US 5000000 #define MAX_TX_LENGTH 64 #define TXRX_PADDING_US 10000 #define MAX_TX_ATTEMPTS 4 #define SPREADING_FACTOR 9 #ifdef SX128x_H #define CF_MHZ 2487.0 #define BW_KHZ 200 #define TX_DBM 12 #else #define CF_MHZ 917.6 #define BW_KHZ 500 #define TX_DBM 17 #endif #define EXPECTED_LENGTH (UNIT_ID * sizeof(message_t)) //#define MEASURED_MAX_ERR (TX_INTERVAL_US / 4000) // +/-100ppm allowance #define MEASURED_MAX_ERR (TX_INTERVAL_US / 300) // +/-Xppm allowance #if defined(SX127x_H) #define RX_STARTUP_US 1500 #elif defined(SX126x_H) #define RX_STARTUP_US 1000 #elif defined(SX128x_H) #define RX_STARTUP_US 1000 #endif unsigned rxStartup_us = RX_STARTUP_US; RawSerial pc(USBTX, USBRX); DigitalIn button(USER_BUTTON); #ifdef TARGET_DISCO_L072CZ_LRWAN1 AnalogIn ain(A0); #elif defined(TARGET_MOTE_L152RC) AnalogIn ain(A0); #else #ifdef TARGET_FF_MORPHO AnalogIn ain(PC_4); // pin unused by arduino shields #endif /* TARGET_FF_MORPHO */ #endif /* !TARGET_DISCO_L072CZ_LRWAN1 */ uint8_t forward_buf[255]; uint8_t forwardLen; uint8_t forwardLenTransmitted; uint8_t forwardLenAckd; int prevFrag; volatile us_timestamp_t forwardedAt; volatile us_timestamp_t lastRxIrqAt; volatile us_timestamp_t measuredInterval, measuredIntervalSaved; enum _state_ { /* 0 */ STATE_NONE = 0, #if (UNIT_ID != 0x00) /* 1 */ STATE_GET_REQ, #endif /* UNIT_ID != 0x00 */ #ifndef UNIT_LAST /* 2 */ STATE_ACK_WAITING, /* 3 */ STATE_TX_FORWARD, #endif /* UNIT_LAST */ } state; void stateToString(enum _state_ s, char* out) { const char* str; switch (s) { case STATE_NONE: str = "NONE"; break; #if (UNIT_ID != 0x00) case STATE_GET_REQ: str = "GET_REQ"; break; #endif /* UNIT_ID != 0x00 */ #ifndef UNIT_LAST case STATE_ACK_WAITING: str = "ACK_WAITING"; break; case STATE_TX_FORWARD: str = "TX_FORWARD"; break; #endif /* UNIT_LAST */ default: sprintf(out, "??%u??", s); return; } strcpy(out, str); } typedef union { struct { uint8_t attempt : 3; // 0,1,2 uint8_t fragNum : 4; // 3,4,5,6 uint8_t fragLast : 1; // 7 } bits; uint8_t octet; } pkt_flags_t; volatile struct _f_ { uint8_t unused : 1; // 0 uint8_t mbedTImeout_forwarderStarted: 1; // 1 uint8_t run : 1; // 2 uint8_t svc : 1; // 3 #ifndef UNIT_LAST uint8_t sample : 1; // 4 uint8_t fwd : 1; // 5 #endif /* UNIT_LAST */ } flags; static uint16_t crc16( uint8_t *buffer, uint16_t length ) { uint16_t i; // The CRC calculation follows CCITT const uint16_t polynom = 0x1021; // CRC initial value uint16_t crc = 0x0000; if( buffer == NULL ) { return 0; } for( i = 0; i < length; ++i ) { uint16_t j; crc ^= ( uint16_t ) buffer[i] << 8; for( j = 0; j < 8; ++j ) { crc = ( crc & 0x8000 ) ? ( crc << 1 ) ^ polynom : ( crc << 1 ); } } return crc; } #ifdef UNIT_LAST void print_payload() { unsigned n; for (n = 0; n < forwardLen; n += sizeof(message_t)) { const message_t* m = (message_t*)&forward_buf[n]; pc.printf("unit %02x: %02x, %u\r\n", m->unit_id, m->flags, m->sample); } } #endif /* UNIT_LAST */ LowPowerTimeout mbedTimeout_nextRx; volatile unsigned retryInterval_us; volatile us_timestamp_t rxStartAt; #if (UNIT_ID != 0x00) void setupNext() { state = STATE_GET_REQ; forwardLen = 0; prevFrag = -1; pc.printf("->GET_REQ "); if (measuredInterval > 0) { Radio::Sleep(); pc.printf("SLEEP mi:%llu ", measuredInterval); measuredInterval = 0; // single use } else { Radio::Rx(0); rxStartAt = 0; // starting of continuous rx not used #ifndef UNIT_LAST flags.sample = 1; #endif /* UNIT_LAST */ pc.printf("RX "); } memset(forward_buf, 0xff, EXPECTED_LENGTH); } #endif /* UNIT_ID != 0x00 */ LowPowerTimeout mbedTImeout_forwarder; #ifndef UNIT_LAST volatile uint8_t txCurs; LowPowerTicker tickerRetry; volatile us_timestamp_t txStartAt; void retry_cb() { unsigned c; pkt_flags_t f; Radio::Standby(); f.octet = Radio::radio.tx_buf[1]; pc.printf("attempt%u", f.bits.attempt); if (++f.bits.attempt >= MAX_TX_ATTEMPTS) { pc.printf(" lastTry"); tickerRetry.detach(); #if (UNIT_ID != 0x00) setupNext(); #endif /* UNIT_ID != 0x00 */ pc.printf("\r\n"); return; } pc.printf("->%u\r\n", f.bits.attempt); Radio::radio.tx_buf[1] = f.octet; c = crc16(Radio::radio.tx_buf, txCurs-2); Radio::radio.tx_buf[txCurs-2] = c >> 8; Radio::radio.tx_buf[txCurs-1] = c; txStartAt = Radio::lpt.read_us(); Radio::Send(txCurs, 0, 0, 0); state = STATE_ACK_WAITING; } volatile uint16_t sample; #ifdef N_SMP volatile uint16_t samples[N_SMP]; #endif #if (UNIT_ID != 0x00) uint8_t _tx_forward() { unsigned fwdLen; unsigned c; uint8_t added, avail, toSendLen, stop = MAX_TX_LENGTH-2; pkt_flags_t f; tickerRetry.attach_us(retry_cb, retryInterval_us); if (forwardLen < EXPECTED_LENGTH) { pc.printf("\e[31mmissing %u bytes\e[0m ", EXPECTED_LENGTH - forwardLen); fwdLen = EXPECTED_LENGTH; } fwdLen = forwardLen; f.octet = Radio::radio.tx_buf[1]; txCurs = 0; Radio::radio.tx_buf[txCurs++] = UNIT_ID; txCurs++; // placeholder for flags to be added at end toSendLen = fwdLen - forwardLenAckd; forwardLenTransmitted = forwardLenAckd; added = 0; while ((txCurs + sizeof(message_t)) < stop && added < toSendLen) { memcpy(Radio::radio.tx_buf + txCurs, forward_buf + forwardLenTransmitted, sizeof(message_t)); forwardLenTransmitted += sizeof(message_t); txCurs += sizeof(message_t); added += sizeof(message_t); } avail = stop - txCurs; if (avail >= sizeof(message_t)) { message_t* mptr = (message_t*)(Radio::radio.tx_buf + txCurs); mptr->unit_id = UNIT_ID; mptr->flags = 0x00; mptr->sample = sample; // taken from main loop #ifdef N_SMP for (c = 0; c < N_SMP; c++) mptr->samples[c] = samples[c]; // taken from main loop #endif txCurs += sizeof(message_t); f.bits.fragLast = 1; } Radio::radio.tx_buf[1] = f.octet; c = crc16(Radio::radio.tx_buf, txCurs); Radio::radio.tx_buf[txCurs++] = c >> 8; Radio::radio.tx_buf[txCurs++] = c; Radio::Send(txCurs, 0, 0, 0); state = STATE_ACK_WAITING; return txCurs; } // .._tx_forward() volatile us_timestamp_t prevFwdStart; void tx_forward_cb() { unsigned dur; uint8_t txlen; us_timestamp_t now; now = Radio::lpt.read_us(); if (measuredIntervalSaved != 0) // in case nothing received mbedTImeout_forwarder.attach_us(tx_forward_cb, measuredIntervalSaved); Radio::radio.tx_buf[1] = 0; //initialize flags forwardLenAckd = 0; txlen = _tx_forward(); flags.mbedTImeout_forwarderStarted = 0; dur = Radio::lora_toa_us(txlen); pc.printf("\e[7mtx_forward_cb %lld", now - prevFwdStart - TX_INTERVAL_US); pc.printf(" dur%u\e[0m\r\n", dur); prevFwdStart = now; } #endif /* UNIT_ID != 0x00 */ void sample_ticker_cb() { flags.sample = 1; } #else // ..UNIT_LAST: void uart_forward_cb() { if (measuredIntervalSaved != 0) // in case nothing received mbedTImeout_forwarder.attach_us(uart_forward_cb, measuredIntervalSaved); forwardLenAckd = 0; print_payload(); setupNext(); flags.mbedTImeout_forwarderStarted = 0; } #endif /* UNIT_LAST */ void nextRxStartCB() { unsigned us; Radio::Rx(0); rxStartAt = Radio::lpt.read_us(); us = (MAX_TX_ATTEMPTS * retryInterval_us) + (MAX_TX_ATTEMPTS * TXRX_PADDING_US); pc.printf("nextRxStartCB for %uus\r\n", us); #ifndef UNIT_LAST flags.sample = 1; #endif /* UNIT_LAST */ } void txDoneCB() { char str[32]; Radio::Rx(0); // receive ack stateToString(state, str); pc.printf("%s:txDone->Rx\r\n", str); } void rxDoneCB(uint8_t size, float rssi, float snr) { #if (UNIT_ID != 0x00) pkt_flags_t f; us_timestamp_t rxIrqAt = Radio::irqAt; #endif /* UNIT_ID != 0x00 */ char str[32]; stateToString(state, str); pc.printf("\e[33mrxDoneCB() %u rssi:%.1fdBm snr:%.1fdB %s ID:%02x\e[0m ", size, rssi, snr, str, Radio::radio.rx_buf[0]); #if (UNIT_ID != 0x00) if (state == STATE_GET_REQ) { uint8_t len; unsigned c, rxc; if (Radio::radio.rx_buf[0] != UNIT_ID-1) { pc.printf(" (not %02x)\r\n", UNIT_ID-1); return; } if (size < 4) { /* minimum: header + crc */ pc.printf(" (size<4)\r\n"); return; } f.octet = Radio::radio.rx_buf[1]; c = crc16(Radio::radio.rx_buf, size-2); rxc = Radio::radio.rx_buf[size-2]; rxc <<= 8; rxc |= Radio::radio.rx_buf[size-1]; if (c != rxc) { pc.printf("\e[31mfrom%02x c:%04x rxc:%04x\e[0m\r\n", Radio::radio.rx_buf[0], c, rxc); for (unsigned n = 0; n < size; n++) pc.printf("%02x ", Radio::radio.rx_buf[n]); pc.printf("\r\n"); return; } //noRxTimeout.detach(); pc.printf(" attempt%u frag%u fragLast%u ", f.bits.attempt, f.bits.fragNum, f.bits.fragLast); if (state == STATE_GET_REQ && flags.mbedTImeout_forwarderStarted == 0 && f.bits.fragLast) { us_timestamp_t now; unsigned sinceRxDone, us; mbedTImeout_forwarder.detach(); now = Radio::lpt.read_us(); sinceRxDone = now - rxIrqAt; us = retryInterval_us * (MAX_TX_ATTEMPTS - f.bits.attempt); int target_us = us - sinceRxDone; // tx to occur after time given for all potential retries #ifndef UNIT_LAST flags.sample = 1; // sample from main loop, to be ready for tx_forward mbedTImeout_forwarder.attach_us(tx_forward_cb, target_us); #else mbedTImeout_forwarder.attach_us(uart_forward_cb, target_us); #endif /* UNIT_LAST */ pc.printf("schedule forward %u, forwarding in %dus. sinceRxDone:%u\r\n", MAX_TX_ATTEMPTS - f.bits.attempt, target_us, sinceRxDone); flags.mbedTImeout_forwarderStarted = 1; forwardedAt = now + target_us; } Radio::radio.tx_buf[0] = UNIT_ID; // OK, send ACK Radio::Send(1, 0, 0, 0); if (prevFrag != f.bits.fragNum) { len = size - 4; // -4: header ... crc memcpy(forward_buf + forwardLen, Radio::radio.rx_buf+2, len); forwardLen += len; prevFrag = f.bits.fragNum; } if (f.bits.fragNum == 0) { unsigned attemptOffset = retryInterval_us * f.bits.attempt; if (rxStartAt == 0) { pc.printf("\e[7m"); } pc.printf("lastRxIrqAt:%llu measuredInterval:%llu ", lastRxIrqAt, measuredInterval); if (lastRxIrqAt != 0) { us_timestamp_t thisMeas; int err_; unsigned abserr; thisMeas = (rxIrqAt - attemptOffset) - lastRxIrqAt; err_ = thisMeas - TX_INTERVAL_US; if (TX_INTERVAL_US > thisMeas) abserr = TX_INTERVAL_US - thisMeas; else abserr = thisMeas - TX_INTERVAL_US; pc.printf(" this:%llu AO:%u, err_:%d ", thisMeas, attemptOffset, err_); if (abserr < MEASURED_MAX_ERR) { int rxPrecedency = 0; unsigned sinceRxDone, _us_; unsigned pktDur = Radio::lora_toa_us(size); us_timestamp_t firstAttemptStartedAt = (rxIrqAt - attemptOffset) - pktDur; measuredInterval = thisMeas; _us_ = measuredInterval; pc.printf("->%llu ", measuredInterval); if (rxStartAt != 0) { rxPrecedency = firstAttemptStartedAt - rxStartAt; if (rxPrecedency > 0) _us_ += rxPrecedency / 2; else _us_ += rxPrecedency; } _us_ -= rxStartup_us; _us_ -= retryInterval_us; // TODO mbedTimeout_nextRx.detach(); sinceRxDone = Radio::lpt.read_us() - rxIrqAt; mbedTimeout_nextRx.attach_us(nextRxStartCB, _us_ - sinceRxDone); pc.printf("nextRx:%u ao%u rxPrecedency:%d pktDur%u ri%u sinceRxDone%u ", _us_ - sinceRxDone, attemptOffset, rxPrecedency, pktDur, retryInterval_us, sinceRxDone); if (measuredIntervalSaved == 0) measuredIntervalSaved = measuredInterval; else { measuredIntervalSaved += measuredInterval; measuredIntervalSaved /= 2; } rxStartAt = 0; } else pc.printf("\e[31mtoo-much-err\e[0m\r\n"); pc.printf("\r\n"); } // ..if (lastRxIrqAt != 0) lastRxIrqAt = rxIrqAt - attemptOffset; pc.printf("\e[0m"); } // ..if (f.bits.fragNum == 0) } // ..if (state == STATE_GET_REQ) else #endif /* UNIT_ID != 0x00 */ #ifndef UNIT_LAST if (state == STATE_ACK_WAITING) { if (Radio::radio.rx_buf[0] == UNIT_ID+1) { pkt_flags_t f; f.octet = Radio::radio.tx_buf[1]; tickerRetry.detach(); forwardLenAckd = forwardLenTransmitted; if (f.bits.fragLast) { pc.printf("ackOk-last "); #if (UNIT_ID == 0x00) pc.printf("->SLEEP "); Radio::Sleep(); #else setupNext(); #endif /* UNIT_ID != 0x00 */ } else { f.bits.fragNum++; f.bits.attempt = 0; Radio::radio.tx_buf[1] = f.octet; flags.sample = 1; flags.fwd = 1; // tx_forward from main loop pc.printf("ackOk->%u ", f.bits.fragNum); } } else pc.printf("ack from different ID %02x\r\n", Radio::radio.rx_buf[0]); } #endif /* UNIT_LAST */ { mbed_stats_cpu_t stats; mbed_stats_cpu_get(&stats); printf("canDeep:%u ", sleep_manager_can_deep_sleep()); printf("Uptime: %llu ", stats.uptime / 1000); printf("Sleep time: %llu ", stats.sleep_time / 1000); printf("Deep Sleep: %llu\r\n", stats.deep_sleep_time / 1000); } pc.printf("\r\n"); } // ..rxDoneCB() #if (UNIT_ID == 0x00) && !defined(UNIT_LAST) LowPowerTicker sampleTicker, txTicker; void tx_ticker_cb(void) { unsigned c; pkt_flags_t f; message_t* mptr; tickerRetry.attach_us(retry_cb, retryInterval_us); f.bits.attempt = 0; f.bits.fragNum = 0; f.bits.fragLast = 1; Radio::Standby(); txCurs = 0; Radio::radio.tx_buf[txCurs++] = UNIT_ID; Radio::radio.tx_buf[txCurs++] = f.octet; mptr = (message_t*)(Radio::radio.tx_buf + txCurs); mptr->unit_id = UNIT_ID; mptr->flags = 0x00; mptr->sample = sample; #ifdef N_SMP for (c = 0; c < N_SMP; c++) mptr->samples[c] = samples[c]; #endif txCurs += sizeof(message_t); c = crc16(Radio::radio.tx_buf, txCurs); Radio::radio.tx_buf[txCurs++] = c >> 8; Radio::radio.tx_buf[txCurs++] = c; Radio::Send(txCurs, 0, 0, 0); txStartAt = Radio::lpt.read_us(); state = STATE_ACK_WAITING; { mbed_stats_cpu_t stats; mbed_stats_cpu_get(&stats); pc.printf("canDeep:%u ", sleep_manager_can_deep_sleep()); pc.printf("Uptime: %llu ", stats.uptime / 1000); pc.printf("Sleep time: %llu ", stats.sleep_time / 1000); pc.printf("Deep Sleep: %llu ", stats.deep_sleep_time / 1000); } pc.printf("tx_ticker_cb:%u\r\n", mptr->sample); } #endif /* UNIT_ID == 0x00 */ #ifdef SX128x_H void print_radio_chip() { uint8_t buf[6]; unsigned khz = 0; LoRaPktPar0_t LoRaPktPar0; LoRaPktPar1_t LoRaPktPar1; status_t st; Radio::radio.xfer(OPCODE_GET_IRQ_STATUS, 0, 3, buf); st.octet = buf[0]; printf("mode:%u cmdStatus:%u irq:%02x %02x ", st.bits.chipMode, st.bits.cmdStatus, buf[1], buf[2]); LoRaPktPar0.octet = Radio::radio.readReg(REG_ADDR_LORA_PKTPAR0, 1); switch (LoRaPktPar0.bits.modem_bw) { case 2: khz = 200; break; case 3: khz = 400; break; case 4: khz = 800; break; case 5: khz = 1600; break; } printf("read:%uKHz sf%u\r\n", khz, LoRaPktPar0.bits.modem_sf); printf("paylen%u ", (uint8_t)Radio::radio.readReg(REG_ADDR_LORA_TX_PAYLOAD_LENGTH, 1)); LoRaPktPar1.octet = Radio::radio.readReg(REG_ADDR_LORA_PKTPAR1, 1); printf("cr%u ", LoRaPktPar1.bits.coding_rate); if (LoRaPktPar1.bits.rxinvert_iq) printf("std "); else printf("inv "); if (LoRaPktPar1.bits.implicit_header) printf("im"); else printf("ex"); printf("plicit\r\n"); } #elif defined(SX127x_H) /* ...SX128x_H */ void print_radio_chip() { } #elif defined(SX126x_H) /* ...SX127x_H */ void print_radio_chip() { } #endif void uart_rx() { char str[32]; char ch = pc.getc(); switch (ch) { case '+': rxStartup_us += 500; pc.printf("rxStartup_us:%u\r\n", rxStartup_us); break; case '-': if (rxStartup_us > 500) rxStartup_us -= 500; pc.printf("rxStartup_us:%u\r\n", rxStartup_us); break; case '.': //Radio::PrintStatus(); printf("UNIT_ID:%02x ", UNIT_ID); printf(" measuredInterval:%llu\r\n", measuredInterval); stateToString(state, str); printf(" %s\r\n", str); break; case 'r': flags.run ^= 1; printf("\r\nrun %u\r\n", flags.run); if (flags.run == 0) { #ifndef UNIT_LAST tickerRetry.detach(); #endif /* !UNIT_LAST */ mbedTImeout_forwarder.detach(); mbedTimeout_nextRx.detach(); Radio::Sleep(); } break; } // ..switch (ch) } void radio_irq_topHalf() { flags.svc = 1; } const RadioEvents_t rev = { /* DioPin_top_half */ radio_irq_topHalf, /* TxDone_topHalf */ NULL,//txDoneCBth, /* TxDone_botHalf */ txDoneCB, /* TxTimeout */ NULL, /* RxDone */ rxDoneCB, /* RxTimeout */ NULL, /* RxError */ NULL, /* FhssChangeChannel */NULL, /* CadDone */ NULL }; int main() { flags.run = 1; pc.baud(115200); pc.printf("\r\nreset\r\n"); Radio::Init(&rev); Radio::Standby(); Radio::LoRaModemConfig(BW_KHZ, SPREADING_FACTOR, 1); Radio::LoRaPacketConfig(8, false, true, false); // preambleLen, fixLen, crcOn, invIQ Radio::SetChannel(CF_MHZ * 1000000); printf("user_button:%u\r\n", button.read()); if (button.read()) { Radio::set_tx_dbm(TX_DBM); printf("PA to %ddBm\r\n", TX_DBM); } else { Radio::set_tx_dbm(PA_OFF_DBM); printf("PA off\r\n"); } /* max TX length + turnaround + ACK length */ retryInterval_us = Radio::lora_toa_us(MAX_TX_LENGTH) + TXRX_PADDING_US + Radio::lora_toa_us(1); #ifdef UNIT_LAST pc.printf("LAST "); #endif pc.printf("UNIT_ID:%02x retryInterval_us:%u\r\n", UNIT_ID, retryInterval_us); state = STATE_NONE; #if (UNIT_ID == 0x00) && !defined(UNIT_LAST) sampleTicker.attach_us(sample_ticker_cb, TX_INTERVAL_US); wait_us(50000); txTicker.attach_us(tx_ticker_cb, TX_INTERVAL_US); #else //Radio::PrintStatus(); setupNext(); measuredInterval = 0; lastRxIrqAt = 0; measuredIntervalSaved = 0; #endif /* UNIT_ID != 0x00 */ /* if (sleep_manager_can_deep_sleep()) sleep_manager_lock_deep_sleep(); // prevent deep sleep */ for (;;) { if (pc.readable()) { uart_rx(); } #ifndef UNIT_LAST if (flags.sample) { sample = ain.read_u16(); #ifdef N_SMP for (c = 0; c < N_SMP; c++) samples[c] = ain.read_u16(); #endif print_radio_chip(); if (flags.fwd) { #if (UNIT_ID == 0x00) pc.printf("\e[31mID00-fwd\e[0m\r\n"); #else _tx_forward(); #endif /* UNIT_ID != 0x00 */ flags.fwd = 0; } flags.sample = 0; } #endif /* UNIT_LAST */ sleep_manager_sleep_auto();; if (flags.svc) { Radio::service(); flags.svc = 0; } } // ..for (;;) }