UART console application for testing SX1272/SX1276

Dependencies:   SX127x

/media/uploads/dudmuck/lora.png

This is a UART console test application for using SX127x library driver for SX1272/SX1276 radio transceivers. Serial console is provided at 57600bps. Refer to Serial Communication with a PC for information about using the serial port with your PC.

Using this command interface, you can exercise the functionality of radio chip without needing specialized software application for your PC.

Commands which can be used include ? to list available commands, or . to query status from radio chip, for example. The serial console allows you to configure the radio chip, such as setting spreading factor, bandwidth, operating frequency, etc.

A simple chat application is provided to try communications between two boards. The SX127x library object is instantiated with pin assignments generic arduino headers, but can be easily reassigned for any mbed board.

The same driver library can operate for both SX1272 and SX1276. Upon starting, the driver auto-detects whether SX1272 or SX1276 transceiver chip is connected by attempting to change the LowFrequencyModeOn bit in RegOpMode register. If this bit can be changed, then the radio device is SX1276. This bit is not implemented in SX1272. A few of the radio driver functions select behavior based on this detection. The differences between these two devices is small, from a software perspective.

Using with SX1276MB1xAS Shield

This component plugs into any board with arduino uno headers.

There are two different version of this shield. European version (MAS), and North American (LAS). The LAS shield uses PA_BOOST transmit pin to permit +20dBm power. The MAS version uses RFO transmit pin in Europe. This software reads RF switch pin (A4 pin) pulling resistor to determine which type of shield is installed.


Using with your own production board

This software is useful for validating RF performance your own LoRa board design, because only two external pins needs to be provided to PC (UART TX/RX). You can select an mbed platform which matches the CPU on your own board. If the memory size doesnt match exactly, you can export the program to an offline toolchain and edit the target type or linker file there.

Transmitter Test Guidelines

FSK mode is used for transmitter testing, because an unmodulated carrier can be sent, permitting easy measurement of TX power and frequency error.

commands used for transmitter testing:

  • frf915.0 change to your desired RF center frequency (in this case 915MHz)
  • L to toggle the radio chip into FSK mode.
  • fdev0 to configure TX frequency deviation to zero, to put the transmitted carrier on the center frequency.
  • pas to select which TX pin is connected to antenna matching (RFO vs PA_BOOST).
  • op<dBm> to configure TX power.
  • If you desire to test higher power PA_BOOST, use ocp<mA>
  • w 01 03 put radio chip into transmit mode (skips writing to FIFO). This will cause radio to transmit preamble, because the FIFO is empty in TX mode. Since Fdev is zero, an unmodulated carrier is sent.
  • Spectrum analyzer can now be used to to observe TX power, harmonics, power consumption, or frequency error.
  • stby to end transmission, or use h to reset radio chip to default condition.
  • Use period . command at any time to review current radio configuration.

LoRa transmitter testing

  • use L command to toggle radio into LoRa, if necessary.
  • Normally the tx command is used to manually send single packets.
  • txc will toggle TxContinuousMode in LoRa modem to send continuous modulated transmission.
  • Useful for checking adjacent channel power.
  • enter txc again to end transmission.

Receiver Test Guidelines

FSK mode is used for receiver sensitivity testing, allowing the use of a BERT signal generator (such as R/S SMIQ03B). Using this method provides real-time indication of receiver sensitivity, useful for tuning and impedance matching. The radio chip outputs DCLK and DATA digital signals which are connected back to BERT signal generator.

commands used for receiver testing:

  • L to toggle the radio chip into FSK mode.
  • datam to toggle FSK modem into continuous mode. This disables packet engine and gives direct access to demodulator.
  • configure DIO1 pin to DCLK function, and DIO2 pin to DATA function:
    • dio command to list current DIO pin asignments
    • d1 to cycle DIO1 function until Dclk is selected
    • d2 for DIO2, only Data function is available in FSK continuous mode
  • frf915.0 change to your desired RF center frequency (in this case 915MHz)
  • rx to start receiver
  • stby to disable receiver

Full command list

Arguments shown in square brackets [] indicate required. <> are optional, where leaving off the argument usually causes a read of the item, and providing the value causes a write operation. You should always have the radio chip datasheet on-hand when using these commands.

Hitting <enter> key by itself will repeat last command.
<Ctrl-C> will cancel an operation in progress.

command list: common commands (both LoRa and FSK)

commanddescription
. (period)print current radio status
?list available commands
Ltoggle active radio modem (LoRa vs FSK)
hhardware reset, put radio into default power-on condition
frf<MHz>get/set RF operating frequency
rxstart radio receiver (any received packets are printed onto your serial terminal)
rssiread instantaneous RSSI (level read at the time command is issued)
tx<%d>transmit test packet. Packet length value can be provided as argument, or uses last value if not provided
payl<%d>get/set payload length
bw<KHz>get/set bandwidth. In LoRa mode, both receive and transmit bandwidth are changed. For FSK, only receive bandwidth is affected. bwa accesses AFC bandwidth in FSK
pastoggle RFO / PA_BOOST transmit pin output selection
op<dBm>get/set TX output power. Value is provided in dBm. Special case is value of 20dBm (on PA_BOOST), which causes increase in TX DAC voltage
ocp<mA>get/set TX current limit, in milliamps. Necessary adjustment when +20dBm is used
dioshow DIO pin assignments
d<0-5>change DIO pin assignment, the pin number is given as arguement. Each pin has up to 4 possible functions
pres<%d>set preamble length. LoRa: number of symbols. FSK: number of bytes
crcontoggle crcOn
lnabcycle LNA-boost setting (receiver performance adjustment)
Rread all radio registers (use only while reading chip datasheet)
r[%x]read single radio register (use only while reading chip datasheet)
w[%x %x]write single radio register (use only while reading chip datasheet)
pllbwchange PLL bandwidth
stbyset chip mode to standby
sleepset chip mode to sleep
fstxset chip mode to fstx
fsrxset chip mode to fsrx
Eiger range test commandsdescription
pid<%d>get set ID number in range test payload
pertx<%d>start Eiger PER transmit. The count of packets to send is provided as arguement
perrxstart Eiger PER receive
txpd<%d>get/set tx delay between PER packets transmitted

command list: LoRa modem commands

LoRa commandLoRa description
iqinvtoggle RX IQ invert
cintoggle TX IQ invert
lhp<%d>(RX) get/set hop period
sync<%x>get/set sync (post-preamble gap, single byte)
cr<1-4>get/set codingRate
lhmtoggle explicit/implicit (explicit mode sends payload length with each packet)
sf<%d>get/set spreadingFactor (SF7 to SF12)
ldrtoggle LowDataRateOptimize (changes payload encoding, for long packets)
txctoggle TxContinuousMode
rxt<%d>get/set SymbTimeout
rxsstart RX_SINGLE (receives only for SymbTimeout symbols)
cad<%d num tries>run channel activity detection

command list: FSK modem commands

FSK commandFSK description
c<%d>get/set test cases. Several FSK bitrates/bandwidths pre-configured to give optimal performance.
fdev<kHz>(TX) get/set frequency deviation
mods(TX) increment modulation shaping
par(TX) increment paRamp
datamtoggle DataMode (packet/continuous)
fifottoggle TxStartCondition (FifoThreshold level vs FifoNotEmpty)
br<%f kbps>get/set bitrate
dcfincrement DcFree (manchester / whitening)
pktftoggle PacketFormat fixed/variable length
syncontoggle SyncOn (frame sync, SFD enable)
bitsynctoggle BitSyncOn (continuous mode only)
syncw<hex bytes>get/set syncword. Sync bytes are provided by hex octects separated by spaces.
fei(RX) read FEI
rxt(RX) increment RxTrigger (RX start on rssi vs. preamble detect)
rssit<-dBm>(RX) get/set rssi threshold (trigger level for RSSI interrupt)
rssis<%d>(RX) get/set rssi smoothing
rssio<%d>(RX) get/set rssi offset
agcauto(RX) toggle AgcAutoOn (true = LNA gain set automatically)
afcauto(RX) toggle AfcAutoOn
ac(RX) AfcClear
ar(RX) increment AutoRestartRxMode
alc(RX) toggle AfcAutoClearOn (only if AfcAutoOn is set)
prep(RX) toggle PreamblePolarity (0xAA vs 0x55)
pde(RX) toggle PreambleDetectorOn
pds<%d>(RX) get/set PreambleDetectorSize
pdt<%d>(RX) get/set PreambleDetectorTol
mp(RX) toggle MapPreambleDetect (DIO function RSSI vs PreambleDetect)
thr<%d>get/set FifoThreshold (triggers FifoLevel interrupt)
polltoggle poll_irq_en. Radio events read from DIO pins vs polling of IrqFlags register
Eempty out FIFO
clkoutincrement ClkOut divider
ookenter OOK mode
ooktincrement OokThreshType
ooksincrement OokPeakTheshStep
sqlch<%d>get/set OokFixedThresh
Revision:
22:2005df80c8a8
Parent:
21:b84a77dfb43c
Child:
23:821b4f426ee6
--- a/main.cpp	Sun Feb 05 23:34:30 2017 +0000
+++ b/main.cpp	Fri Apr 14 20:33:24 2017 +0000
@@ -2,6 +2,7 @@
 #include "sx127x_fsk.h"
 #define __STDC_FORMAT_MACROS
 #include <inttypes.h>
+
 //#include "kermit.h"
 
 //#define FSK_PER
@@ -9,6 +10,9 @@
 //#define START_EIGER_TX
 //#define START_OOK_TX_TEST
 
+/* on B-L072Z-LRWAN1 use target NUCLEO-L073RX, and for correct baudrate must install SB36 and remove C24 */
+//#define TYPE_ABZ 
+
 DigitalOut led1(LED1);
 Serial pc(USBTX, USBRX);
 
@@ -101,8 +105,43 @@
 DigitalIn dio2(LORA_DIO2);
 DigitalIn dio4(LORA_DIO4);
 
-#else   /********************* ...mDot **********************/
-
+#elif defined(TARGET_NUCLEO_L073RZ) && defined(TYPE_ABZ)   /********************* ...mDot **********************/ 
+    /* Murata TypeABZ discovery board */
+    //           mosi, miso, sclk,   cs,  rst,  dio0, dio1
+    SX127x radio(PA_7, PA_6, PB_3, PA_15, PC_0, PB_4, PB_1);
+    DigitalIn dio2(PB_0);
+    DigitalIn dio3(PC_13);
+    #define FSK_RSSI_OFFSET         0
+    #define FSK_RSSI_SMOOTHING      2
+    #define CRF1    PA_1
+    #define CRF2    PC_2
+    #define CRF3    PC_1
+    DigitalOut Vctl1(CRF1);
+    DigitalOut Vctl2(CRF2);
+    DigitalOut Vctl3(CRF3);
+    
+    void rfsw_callback()
+    {
+        if (radio.RegOpMode.bits.Mode == RF_OPMODE_TRANSMITTER) {
+            Vctl1 = 0;        
+            if (radio.RegPaConfig.bits.PaSelect) {
+                Vctl2 = 0;
+                Vctl3 = 1;                        
+            } else {
+                Vctl2 = 1;
+                Vctl3 = 0;            
+            }
+        } else {
+            if (radio.RegOpMode.bits.Mode == RF_OPMODE_RECEIVER || radio.RegOpMode.bits.Mode == RF_OPMODE_RECEIVER_SINGLE)
+                Vctl1 = 1;
+            else
+                Vctl1 = 0;
+            
+            Vctl2 = 0;
+            Vctl3 = 0;        
+        }
+    }    
+#else /***************** ..Type-ABZ and L073RZ *************/
 //  pin:       3     8     1      7    10    12     5
 //           mosi, miso, sclk,   cs,  rst,  dio0, dio1
 SX127x radio(D11,   D12, D13,    D10,  A0,   D2,   D3); // sx1276 arduino shield
@@ -123,8 +162,9 @@
 DigitalIn dio2(D4);
 DigitalIn dio3(D5);
 DigitalIn dio4(D8);
-
-#ifdef TARGET_STM
+DigitalIn dio5(D9);
+
+#if defined(TARGET_STM)
 DigitalOut pc3(PC_3);   // nucleo corner pin for misc indication
 #endif
 
@@ -152,7 +192,9 @@
 SX127x_lora lora(radio);
 //Kermit kermit(lora);
 
+#ifndef TYPE_ABZ
 volatile bool saved_dio4;
+#endif
 
 uint32_t crcTable[256];
 void make_crc_table()
@@ -951,7 +993,11 @@
         printf("ImageCalRunning[\r0m\n");
     
     if (rx_payloadReady_int_en) {
+#ifdef TYPE_ABZ
+        printf("n_rx_pkts:%u, dio:%u,%u,%u,%u\r\n", n_rx_pkts, dio3.read(), dio2.read(), radio.dio1.read(), radio.dio0.read());
+#else
         printf("n_rx_pkts:%u, dio:%u,%u,%u,%u,%u\r\n", n_rx_pkts, dio4.read(), dio3.read(), dio2.read(), radio.dio1.read(), radio.dio0.read());
+#endif
     }
 }
 
@@ -1468,9 +1514,11 @@
 }
 
 void cmd_restart_rx(uint8_t);
+int preamble_to_sync_us;
+#ifndef TYPE_ABZ
 Timeout timeout_syncAddress;
-int preamble_to_sync_us;
 bool get_syncAddress;
+#endif
 float preamble_detect_at;
 
 void callback_sa_timeout()
@@ -1496,7 +1544,7 @@
     if (radio.RegOpMode.bits.LongRangeMode) {
         if (rssi_polling_thresh != 0 && radio.RegOpMode.bits.Mode == RF_OPMODE_RECEIVER) {
             int rssi = lora.get_current_rssi(); // dBm returned, negative value
-#ifdef TARGET_STM
+#if defined(TARGET_STM) && !defined(TYPE_ABZ)
             if (rssi < rssi_polling_thresh)
                 pc3 = 0;    // signal weaker than threshold
             else
@@ -1613,7 +1661,8 @@
             case SERVICE_NONE:
                 break;                
         } // ...switch (act)
-         
+
+#ifndef TYPE_ABZ
         /* FSK receiver handling of preamble detection */
         if (radio.RegDioMapping2.bits.MapPreambleDetect && radio.RegDioMapping2.bits.Dio4Mapping == 3) {
             if (saved_dio4 != dio4.read()) {
@@ -1634,7 +1683,7 @@
                 saved_dio4 = dio4.read();
              }
          }  // ..if dio4 is 
-         
+             
          if (radio.RegDioMapping1.bits.Dio2Mapping == 3) {
              if (dio2.read()) {
                  if (get_syncAddress) {
@@ -1644,21 +1693,19 @@
                  rssi = radio.read_reg(REG_FSK_RSSIVALUE);
              }
          }
-         
-         /*if (radio.RegDioMapping1.bits.Dio1Mapping == 1 && radio.dio1) {
-              = radio.read_reg(REG_FSK_RSSIVALUE);
-         }*/
-         
+#endif /* !TYPE_ABZ */           
+
         if (rssi_polling_thresh != 0 && radio.RegOpMode.bits.Mode == RF_OPMODE_RECEIVER) {
             rssi = radio.read_reg(REG_FSK_RSSIVALUE);
             rssi = -rssi;
-#ifdef TARGET_STM
+#if defined(TARGET_STM) && !defined(TYPE_ABZ)
             if (rssi < rssi_polling_thresh)
                 pc3 = 0;    // signal weaker than threshold
             else
                 pc3 = 1;    // signal stronger than threshold
+#endif
         }
-#endif
+
     } // ...!radio.RegOpMode.bits.LongRangeMode
 }
 
@@ -1727,7 +1774,7 @@
     }
 }
 
-const uint8_t ookt_tx_payload[] = {
+const uint8_t ookt_tx_payload[29] = {
     0x55, 0x55, 0x55, 0x55, 0xA9, 0x66, 0x69, 0x65,
     0x39, 0x53, 0xAA, 0xC3, 0xA6, 0x95, 0xC6, 0x3C,
     0x6A, 0x33, 0x33, 0xC6, 0xCA, 0xA6, 0x33, 0x33,
@@ -2459,7 +2506,7 @@
 void cmd_print_status(uint8_t idx)
 {
     if (radio.type == SX1276) {
-#ifdef TARGET_MTS_MDOT_F411RE
+#if defined(TARGET_MTS_MDOT_F411RE) || defined(TYPE_ABZ)
         printf("\r\nSX1276 ");
 #else
         if (shield_type == SHIELD_TYPE_LAS)
@@ -2659,6 +2706,7 @@
         sscanf(pcbuf+idx, "%d", &symb_timeout);
         reg_u16 &= 0xfc00;
         reg_u16 |= symb_timeout;
+        radio.write_u16(REG_LR_MODEMCONFIG2, reg_u16);
     }
     reg_u16 = radio.read_u16(REG_LR_MODEMCONFIG2);
     printf("SymbTimeout:%d\r\n", reg_u16 & 0x3ff);
@@ -2683,303 +2731,6 @@
     // only used between frames, on background noise
     pd_timeout.attach_us(&preamble_without_sync, 1500); // 122us per byte
 }
- 
-void prrx_end()
-{
-    uint8_t n, i;
-    
-    for (n = 0; n < n_rx_pkts; n++) {
-        printf("%d) %d: ", n, rx_pkts[n][0]);
-        for (i = 0; i < rx_pkts[n][0]; i++) {
-            if (i < RX_PKT_SIZE_LIMIT)
-                printf("%02x ", rx_pkts[n][i+1]);
-        }
-        printf("\r\n");          
-    }
-    
-    n_rx_pkts = 0;    // done with rx packets, clear for next time
-    
-    /* end of this reception, prepare for next super-packet */
-    fsk.RegRxConfig.bits.AgcAutoOn = 1;
-    fsk.RegRxConfig.bits.AfcAutoOn  = 1;
-    fsk.RegRxConfig.bits.RxTrigger = 6; // preamble
-    fsk.RegAfcFei.bits.AfcAutoClearOn = 1;
-    radio.write_reg(REG_FSK_AFCFEI, fsk.RegAfcFei.octet);
-    
-    fsk.RegRxConfig.bits.RestartRxWithoutPllLock = 1;
-    radio.write_reg(REG_FSK_RXCONFIG, fsk.RegRxConfig.octet); 
-    
-    dio4int.rise(&preamble_detect_isr); // detect preamble without sync on background noise
-    dio4int.enable_irq();
-    
-    dio0int.disable_irq();      // disable packet end detection       
-}
-
-volatile bool length_byte;
-void syncadrs_dio2_isr(void);
-
-void payloadReady_isr()
-{
-    uint8_t i;
-    
-    dio0int.disable_irq();  // disable ourselves, enabled at syncadrs detection
-    dio1int.disable_irq();      // disable prrx_fifoLevel_isr() while handling end-of-packet
-    
-    if (!rx_payloadReady_int_en) {
-        radio.set_opmode(RF_OPMODE_STANDBY);
-        dio2int.disable_irq();
-        dio4int.disable_irq();
-        printf("payloadReady_isr() not enabled\r\n");
-        return;
-    }
-    
-    if (radio.RegOpMode.bits.Mode != RF_OPMODE_RECEIVER && radio.RegOpMode.bits.Mode != RF_OPMODE_SYNTHESIZER_RX) {
-        rx_payloadReady_int_en = false;
-        printf("payloadReady_isr() not-rx\r\n");
-        return;
-    }
-    
-    //Simultaneously write AgcAutoOn = 0, AgcAutoOn = 0,  RXTrigger = Rssi, LnaGain value = read above (i.e. AGC is fixed from reception of first packet)
-    if (fsk.RegRxConfig.bits.AgcAutoOn) {
-        fsk.RegRxConfig.bits.AgcAutoOn = 0;
-        fsk.RegRxConfig.bits.AfcAutoOn  = 0;
-        fsk.RegRxConfig.bits.RxTrigger = 1; // rssi
-        fsk.RegAfcFei.bits.AfcAutoClearOn = 0;
-        radio.write_reg(REG_FSK_AFCFEI, fsk.RegAfcFei.octet);
-    }       
-    
-    fsk.RegRxConfig.bits.RestartRxWithoutPllLock = 1;
-    radio.write_reg(REG_FSK_RXCONFIG, fsk.RegRxConfig.octet); 
-    
-    radio.m_cs = 0;
-    radio.m_spi.write(REG_FIFO); // bit7 is low for reading from radio
-        
-    if (length_byte) {
-        /* none of the packet has been retrieved */
-        rx_pkts[n_rx_pkts][0] = radio.m_spi.write(0);   // read length byte
-        for (i = 0; i < rx_pkts[n_rx_pkts][0]; i++) {
-            uint8_t o, idx = i + 1;
-            o = radio.m_spi.write(0);
-            if (idx < RX_PKT_SIZE_LIMIT)
-                rx_pkts[n_rx_pkts][idx] = o;
-            else {
-                printf("L-prrx-overflow %u %u %u\r\n", n_rx_pkts, idx, rx_pkts[n_rx_pkts][0]);
-                break;
-            }
-        }        
-    } else {
-        /* last packet bytes havent been retrieved? */
-        while (rx_payload_idx < rx_pkts[n_rx_pkts][0]) {
-            if (rx_payload_idx < RX_PKT_SIZE_LIMIT)
-                rx_pkts[n_rx_pkts][++rx_payload_idx] = radio.m_spi.write(0);
-            else {
-                printf("R-prrx-overflow %u %u %u\r\n", n_rx_pkts, rx_payload_idx, rx_pkts[n_rx_pkts][0]);
-                break;
-            }
-        }
-    }
-    radio.m_cs = 1; 
-    
-    if (++n_rx_pkts >= N_RX_PKTS) {
-        /* overflow, stop */
-        prrx_end();
-        rx_payloadReady_int_en = false;
-        radio.set_opmode(RF_OPMODE_STANDBY);
-        dio2int.disable_irq();
-        dio4int.disable_irq();
-        printf("n_rx_pkts overflow\r\n");
-        return;
-    }
-    
-    // timeout occurs if next syncadrs doesnt come
-    sync_timeout.attach_us(&prrx_end, 2000); // 122us per byte
-    
-    dio2int.rise(&syncadrs_dio2_isr);  // timeout for detecting last packet
-    dio2int.enable_irq();
-}
-
-void prrx_fifoLevel_isr()
-{
-    bool fail = false;
-    
-    if (dio0int.read()) {
-        printf("fifolevel_isr: dio0 set\r\n");
-        return;
-    }
-    
-    radio.m_cs = 0;
-    radio.m_spi.write(REG_FIFO); // bit7 is low for reading from radio
-        
-    while (!dio3) { // while fifo has something
-        if (length_byte) {
-            rx_pkts[n_rx_pkts][0] = radio.m_spi.write(0);
-            length_byte = false;
-            rx_payload_idx = 0;
-        } else {
-            if (rx_payload_idx < RX_PKT_SIZE_LIMIT)
-                rx_pkts[n_rx_pkts][++rx_payload_idx] = radio.m_spi.write(0);
-            else {
-                printf("isr-prrx-overflow %u %u %u, dio3:%d\r\n", n_rx_pkts, rx_payload_idx, rx_pkts[n_rx_pkts][0], dio3.read());
-                fail = true;       
-                break;
-            }
-        }
-    }
-    radio.m_cs = 1;
-    
-    if (fail)
-        fsk_print_IrqFlags2();
-}
-
-void syncadrs_dio2_isr()
-{
-    pc3 = !pc3;
-    /* syncadrs match, disable end-timeout */
-    if (!dio3.read()) {
-        printf("syncadrs: fifo not empty\r\n");
-        rx_payloadReady_int_en = false;
-        radio.set_opmode(RF_OPMODE_STANDBY);
-        dio0int.disable_irq();
-        dio1int.disable_irq();
-        dio2int.disable_irq();
-        dio4int.disable_irq();        
-        return;
-    }
-        
-    sync_timeout.detach();
-    pd_timeout.detach();
-    dio4int.disable_irq(); // inhibit preamble_detect_isr() until end
-    
-    if (dio0int.read()) {
-        printf("syncadrs_dio2_isr: dio0 set\r\n");
-        return;
-    }
-    if (dio1int.read()) {
-        printf("syncadrs_dio2_isr: dio1 set\r\n");
-        return;
-    }    
-    
-    dio0int.rise(&payloadReady_isr); // end of packet detection
-    dio0int.enable_irq();    
-    
-    dio1int.rise(&prrx_fifoLevel_isr); // flow control during packet
-    dio1int.enable_irq(); 
-
-    length_byte = true; // first byte is length
-}
-
-void cmd_prrx(uint8_t idx)
-{
-    radio.m_spi.frequency(10000000);    // max speed
-    radio.set_opmode(RF_OPMODE_STANDBY);
-    
-    fsk.RegPktConfig1.octet = radio.read_reg(REG_FSK_PACKETCONFIG1);
-    fsk.RegPktConfig1.bits.PacketFormatVariable = 1;    // varible length format
-    radio.write_reg(REG_FSK_PACKETCONFIG1, fsk.RegPktConfig1.octet);    
-    
-    // DIO0 to payloadReady
-    radio.RegDioMapping1.octet = radio.read_reg(REG_DIOMAPPING1);
-    radio.RegDioMapping1.bits.Dio0Mapping = 0;  // PayloadReady
-    radio.RegDioMapping1.bits.Dio1Mapping = 0;  // FifoLevel
-    radio.RegDioMapping1.bits.Dio2Mapping = 3;  // dio2 to SyncAddress in RX
-    radio.write_reg(REG_DIOMAPPING1, radio.RegDioMapping1.octet); 
-    
-    radio.RegDioMapping2.octet = radio.read_reg(REG_DIOMAPPING2);
-    radio.RegDioMapping2.bits.Dio4Mapping = 3;
-    radio.RegDioMapping2.bits.MapPreambleDetect = 1;    // dio4 to preambleDetect in RX
-    radio.write_reg(REG_DIOMAPPING2, radio.RegDioMapping2.octet);         
-    
-    fsk.RegRxConfig.octet = radio.read_reg(REG_FSK_RXCONFIG);   // update shadow
-
-    fsk.RegFifoThreshold.octet = radio.read_reg(REG_FSK_FIFOTHRESH);  
-    fsk.RegFifoThreshold.bits.FifoThreshold = 6;  // fifoLevel_isr threshold
-    radio.write_reg(REG_FSK_FIFOTHRESH, fsk.RegFifoThreshold.octet);
-    
-    radio.set_opmode(RF_OPMODE_RECEIVER);
-    n_rx_pkts = 0;
-    
-    rx_payloadReady_int_en = true;  
-    
-    dio2int.rise(&syncadrs_dio2_isr);  // timeout for detecting last packet
-    dio2int.enable_irq();
-    
-    dio4int.rise(&preamble_detect_isr); // detect preamble without sync on background noise
-    dio4int.enable_irq();
-}
-
-void ulrx_fifoLevel_isr()
-{
-    uint8_t o;
-    
-    radio.m_cs = 0;
-    radio.m_spi.write(REG_FIFO); // bit7 is low for reading from radio
-
-    while (!dio3) { // while FifoEmpty is not asserted
-        switch (ulrx_state) {
-            case ULRX_STATE_NEED_LENGTH:
-                rx_pkts[n_rx_pkts][0] = radio.m_spi.write(0);   // read length byte
-                ulrx_state = ULRX_STATE_PAYLOAD;
-                rx_payload_idx = 0;
-                break;
-            case ULRX_STATE_PAYLOAD:
-                o = radio.m_spi.write(0);
-                if (rx_payload_idx < rx_pkts[n_rx_pkts][0]) {
-                    if (rx_payload_idx < RX_PKT_SIZE_LIMIT)
-                        rx_pkts[n_rx_pkts][rx_payload_idx++] = o;
-                } else {
-                    /* first byte after payload */
-                    if (++n_rx_pkts >= N_RX_PKTS) {
-                        radio.set_opmode(RF_OPMODE_STANDBY);
-                        ulrx_state = ULRX_STATE_OFF;
-                        printf("n_rx_pkts overflow\r\n");
-                        return;
-                    }
-                    ulrx_state = ULRX_STATE_SYNC1;
-                }
-                break;
-            case ULRX_STATE_SYNC1:
-                o = radio.m_spi.write(0);
-                /* TODO */
-                break;
-        }
-    } // ..while fifo has something
-    
-    radio.m_cs = 1; 
-}
-
-void cmd_ulrx(uint8_t idx)
-{
-    radio.set_opmode(RF_OPMODE_STANDBY);
-    
-    //unlimited packet length mode
-    fsk.RegPktConfig1.octet = radio.read_reg(REG_FSK_PACKETCONFIG1);
-    fsk.RegPktConfig1.bits.PacketFormatVariable = 0;    // fixed length format
-    radio.write_reg(REG_FSK_PACKETCONFIG1, fsk.RegPktConfig1.octet);
-    
-    fsk.RegPktConfig2.word = radio.read_u16(REG_FSK_PACKETCONFIG2);
-    fsk.RegPktConfig2.bits.PayloadLength = 0;
-    radio.write_u16(REG_FSK_PACKETCONFIG2, fsk.RegPktConfig2.word);    
-    
-    radio.RegDioMapping1.octet = radio.read_reg(REG_DIOMAPPING1);
-    radio.RegDioMapping1.bits.Dio3Mapping = 0;  // FifoEmpty
-    //DIO2 to FifoFull
-    radio.RegDioMapping1.bits.Dio2Mapping = 0;  // FIfoFull
-    //DIO1 to FifoLevel
-    radio.RegDioMapping1.bits.Dio1Mapping = 0;  // FifoLevel
-    //radio.RegDioMapping1.bits.Dio0Mapping = 0;  // useful?
-    radio.write_reg(REG_DIOMAPPING1, radio.RegDioMapping1.octet); 
-    //FifoThreshold to approx 1/5th full
-    fsk.RegFifoThreshold.octet = radio.read_reg(REG_FSK_FIFOTHRESH);  
-    fsk.RegFifoThreshold.bits.FifoThreshold = 48; // 75% full
-    radio.write_reg(REG_FSK_FIFOTHRESH, fsk.RegFifoThreshold.octet);
-    
-    ulrx_enable = true;
-    ulrx_state = ULRX_STATE_NEED_LENGTH;
-    dio1int.rise(&ulrx_fifoLevel_isr);
-    dio1int.enable_irq();    
-    n_rx_pkts = 0;
-    radio.set_opmode(RF_OPMODE_RECEIVER);
-}
 
 void cmd_rx(uint8_t idx)
 {    
@@ -3592,7 +3343,7 @@
         radio.set_frf_MHz(MHz);
     }
     printf("%fMHz\r\n", radio.get_frf_MHz());
-#ifndef TARGET_MTS_MDOT_F411RE
+#if !defined(TARGET_MTS_MDOT_F411RE) && !defined(TYPE_ABZ)
     radio.RegPaConfig.octet = radio.read_reg(REG_PACONFIG);
     if (shield_type == SHIELD_TYPE_LAS) {
         // LAS HF=PA_BOOST  LF=RFO
@@ -4209,9 +3960,7 @@
     { MODEM_FSK, "rrx", cmd_restart_rx, "","restart RX"},  
     { MODEM_BOTH, "op", cmd_op, "<dBm>","(TX) get/set TX power"}, 
     { MODEM_FSK, "bt", cmd_bt, "","get/set BT"},  
-    { MODEM_FSK, "ltx", cmd_long_tx, "<%d>","long tx"}, 
-    { MODEM_FSK, "prrx", cmd_prrx, "","start RX with payloadReady isr"},
-    { MODEM_FSK, "ulrx", cmd_ulrx, "","start RX with unlimited length"},
+    { MODEM_FSK, "ltx", cmd_long_tx, "<%d>","long tx"},
     
 #ifdef LORA_TX_TEST
     { MODEM_LORA, "apl", cmd_lora_all_payload_lengths, "","(TXTEST) sweep payload lengths 0->255"},
@@ -4395,7 +4144,7 @@
     
     make_crc_table();
     
-#ifndef TARGET_MTS_MDOT_F411RE
+#if !defined(TARGET_MTS_MDOT_F411RE) && !defined(TYPE_ABZ)
     rfsw.input();
     if (rfsw.read()) {
         shield_type = SHIELD_TYPE_LAS;
@@ -4523,7 +4272,7 @@
 
     (void)radio.get_frf_MHz();
     radio.RegPaConfig.octet = radio.read_reg(REG_PACONFIG);
-#ifdef TARGET_MTS_MDOT_F411RE
+#if defined(TARGET_MTS_MDOT_F411RE) || defined(TYPE_ABZ)
     radio.RegPaConfig.bits.PaSelect = 1;    // mDot uses PA_BOOST
 #else
     if (shield_type == SHIELD_TYPE_LAS) {