end node on synchronous star LoRa network.

Dependencies:   SX127x sx12xx_hal TSL2561

radio chip selection

Radio chip driver is not included, allowing choice of radio device.
If you're using SX1272 or SX1276, then import sx127x driver into your program.
if you're using SX1261 or SX1262, then import sx126x driver into your program.
if you're using SX1280, then import sx1280 driver into your program.
If you're using NAmote72 or Murata discovery, then you must import only sx127x driver.

This project for use with LoRaWAN_singlechannel_gateway project.

Alternately gateway running on raspberry pi can be used as gateway.

LoRaWAN on single radio channel

Network description is at gateway project page. Synchronous star network.

Hardware Support

This project supports SX1276 and SX1272, sx126x kit, sx126x shield, and sx128x 2.4GHz. The ST board B-L072Z-LRWAN1 is also supported (TypeABZ module). When B-L072Z-LRWAN1 target is selected, TARGET_DISCO_L072CZ_LRWAN1 is defined by tools, allowing correct radio driver configuration for this platform. Alternately, any mbed board that can use LoRa radio shield board should work, but NUCLEO boards are tested.

End-node Unique ID

DevEUI is created from CPU serial number. AppEUI and AppKey are declared as software constants.

End-node Configuration

Data rate definition LORAMAC_DEFAULT_DATARATE configured in LoRaMac-definitions.h. See gateway project page for configuration of gateway.
LoRaWAN addressing is configured in Comissioning.h; only OTA mode is functional.
Header file board/lora_config.h, selects application layer options (i.e. sensors) to be compiled in.

Serial Interface

Serial port operates at 115200bps.
Application layer single_us915_main.cpp User button triggers uplink (i.e. blue button on nucleo board), or jumper enables continuously sends repeated uplink packets. The MAC layer holds each uplink request until the allocated timeslot.

commandargumentsdescription
?-print available commands
. (period)-print status (DevEUI, DevAddr, etc)
ullength integerset payload length of test uplink packets

sensor demo

Selected grove sensors may be plugged into SX1272 shield.
To enable, edit lora_config.h to define SENSORS.

Sensor connections on SX1272MB2xAS:

D8 D9: buttonRX TX: (unused)A3 A4: Rotary Angle Sensor
D6 D7: RGB LEDSCL SDA: digital light sensorA1 A2: Rotary Angle Sensor

Digital input pin, state reported via uplink: PC8
Digital output pin, controlled via downlink: PC6
PWM out: PB_10

Jumper enables auto-repeated transmit: PC10 and PC12 on NUCLEO board, located on end of morpho headers nearby JP4.

system/crypto/gladman_aes.h

Committer:
Wayne Roberts
Date:
2020-07-13
Revision:
35:be452a242876
Parent:
0:8f0d0ae0a077

File content as of revision 35:be452a242876:

/*
 ---------------------------------------------------------------------------
 Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

 LICENSE TERMS

 The redistribution and use of this software (with or without changes)
 is allowed without the payment of fees or royalties provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue 09/09/2006

 This is an AES implementation that uses only 8-bit byte operations on the
 cipher state.
 */

#ifndef AES_H
#define AES_H

#if 1
#  define AES_ENC_PREKEYED  /* AES encryption with a precomputed key schedule  */
#endif
#if 0
#  define AES_DEC_PREKEYED  /* AES decryption with a precomputed key schedule  */
#endif
#if 0
#  define AES_ENC_128_OTFK  /* AES encryption with 'on the fly' 128 bit keying */
#endif
#if 0
#  define AES_DEC_128_OTFK  /* AES decryption with 'on the fly' 128 bit keying */
#endif
#if 0
#  define AES_ENC_256_OTFK  /* AES encryption with 'on the fly' 256 bit keying */
#endif
#if 0
#  define AES_DEC_256_OTFK  /* AES decryption with 'on the fly' 256 bit keying */
#endif

#define N_ROW                   4
#define N_COL                   4
#define N_BLOCK   (N_ROW * N_COL)
#define N_MAX_ROUNDS           14

typedef uint8_t return_type;

/*  Warning: The key length for 256 bit keys overflows a byte
    (see comment below)
*/

typedef uint8_t length_type;

typedef struct
{   uint8_t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK];
    uint8_t rnd;
} aes_context;

/*  The following calls are for a precomputed key schedule

    NOTE: If the length_type used for the key length is an
    unsigned 8-bit character, a key length of 256 bits must
    be entered as a length in bytes (valid inputs are hence
    128, 192, 16, 24 and 32).
*/

#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )

return_type aes_set_key( const uint8_t key[],
                         length_type keylen,
                         aes_context ctx[1] );
#endif

#if defined( AES_ENC_PREKEYED )

return_type aes_encrypt( const uint8_t in[N_BLOCK],
                         uint8_t out[N_BLOCK],
                         const aes_context ctx[1] );

return_type aes_cbc_encrypt( const uint8_t *in,
                         uint8_t *out,
                         int32_t n_block,
                         uint8_t iv[N_BLOCK],
                         const aes_context ctx[1] );
#endif

#if defined( AES_DEC_PREKEYED )

return_type aes_decrypt( const uint8_t in[N_BLOCK],
                         uint8_t out[N_BLOCK],
                         const aes_context ctx[1] );

return_type aes_cbc_decrypt( const uint8_t *in,
                         uint8_t *out,
                         int32_t n_block,
                         uint8_t iv[N_BLOCK],
                         const aes_context ctx[1] );
#endif

/*  The following calls are for 'on the fly' keying.  In this case the
    encryption and decryption keys are different.

    The encryption subroutines take a key in an array of bytes in
    key[L] where L is 16, 24 or 32 bytes for key lengths of 128,
    192, and 256 bits respectively.  They then encrypts the input
    data, in[] with this key and put the reult in the output array
    out[].  In addition, the second key array, o_key[L], is used
    to output the key that is needed by the decryption subroutine
    to reverse the encryption operation.  The two key arrays can
    be the same array but in this case the original key will be
    overwritten.

    In the same way, the decryption subroutines output keys that
    can be used to reverse their effect when used for encryption.

    Only 128 and 256 bit keys are supported in these 'on the fly'
    modes.
*/

#if defined( AES_ENC_128_OTFK )
void aes_encrypt_128( const uint8_t in[N_BLOCK],
                      uint8_t out[N_BLOCK],
                      const uint8_t key[N_BLOCK],
                      uint8_t o_key[N_BLOCK] );
#endif

#if defined( AES_DEC_128_OTFK )
void aes_decrypt_128( const uint8_t in[N_BLOCK],
                      uint8_t out[N_BLOCK],
                      const uint8_t key[N_BLOCK],
                      uint8_t o_key[N_BLOCK] );
#endif

#if defined( AES_ENC_256_OTFK )
void aes_encrypt_256( const uint8_t in[N_BLOCK],
                      uint8_t out[N_BLOCK],
                      const uint8_t key[2 * N_BLOCK],
                      uint8_t o_key[2 * N_BLOCK] );
#endif

#if defined( AES_DEC_256_OTFK )
void aes_decrypt_256( const uint8_t in[N_BLOCK],
                      uint8_t out[N_BLOCK],
                      const uint8_t key[2 * N_BLOCK],
                      uint8_t o_key[2 * N_BLOCK] );
#endif

#endif