Modified to communicate with open energy monitoring platform
Dependents: Solid_Fuel_Energy_Monitor
RFM69.cpp
- Committer:
- dswood
- Date:
- 2022-01-07
- Revision:
- 0:37f3683b3648
File content as of revision 0:37f3683b3648:
//Port of RFM69 from lowpowerlab
//Sync'd Feb. 6, 2015
//spi register read/write routines from Karl Zweimuller's RF22
//
//
//
// **********************************************************************************
// Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H
// **********************************************************************************
// Copyright Felix Rusu (2014), felix@lowpowerlab.com
// http://lowpowerlab.com/
// **********************************************************************************
// License
// **********************************************************************************
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses/>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **********************************************************************************// RF22.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RF22.cpp,v 1.17 2013/02/06 21:33:56 mikem Exp mikem $
// ported to mbed by Karl Zweimueller
#include "mbed.h"
#include "RFM69.h"
#include <RFM69registers.h>
#include <SPI.h>
volatile uint8_t RFM69::DATA[RF69_MAX_DATA_LEN];
volatile uint8_t RFM69::_mode; // current transceiver state
volatile uint8_t RFM69::DATALEN;
volatile uint8_t RFM69::SENDERID;
volatile uint8_t RFM69::TARGETID; // should match _address
volatile uint8_t RFM69::PAYLOADLEN;
volatile uint8_t RFM69::ACK_REQUESTED;
volatile uint8_t RFM69::ACK_RECEIVED; // should be polled immediately after sending a packet with ACK request
volatile int16_t RFM69::RSSI; // most accurate RSSI during reception (closest to the reception)
RFM69::RFM69(PinName mosi, PinName miso, PinName sclk, PinName slaveSelectPin, PinName interrupt):
_slaveSelectPin(slaveSelectPin) , _spi(mosi, miso, sclk), _interrupt(interrupt) {
// Setup the spi for 8 bit data, high steady state clock,
// second edge capture, with a 1MHz clock rate
_spi.format(8,0);
_spi.frequency(4000000);
_mode = RF69_MODE_STANDBY;
_promiscuousMode = false;
_powerLevel = 31;
}
void RFM69::setNodeID(uint8_t nodeID)
{
MyNodeID=nodeID;
}
bool RFM69::initialize(uint8_t freqBand, uint8_t nodeID, uint8_t networkID)
{
//SS.printf("Init Start\n\r");
bool myresult=false;
setNodeID(nodeID);
MyNetworkID=networkID;
unsigned long start_to;
const uint8_t CONFIG[][2] =
{
/* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY },
/* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping
/* 0x03 */ { REG_BITRATEMSB, 0x02}, // Same as JeeLib
/* 0x04 */ { REG_BITRATELSB, 0x8a}, // 49261
/* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_90000}, // default: 5KHz, (FDEV + BitRate / 2 <= 500KHz)
/* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_90000},
{REG_FRFMSB,0x6c},
{REG_FRFMID,0x80},
{REG_FRFLSB,0x00},
/* 0x07 */ //{ REG_FRFMSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMSB_315 : (freqBand==RF69_433MHZ ? RF_FRFMSB_434 : (freqBand==RF69_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) },
/* 0x08 */ //{ REG_FRFMID, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMID_315 : (freqBand==RF69_433MHZ ? RF_FRFMID_434 : (freqBand==RF69_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) },
/* 0x09 */ //{ REG_FRFLSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFLSB_315 : (freqBand==RF69_433MHZ ? RF_FRFLSB_434 : (freqBand==RF69_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) },
/* 0x0B */ { REG_AFCCTRL, RF_AFCCTRL_LOWBETA_ON },
// looks like PA1 and PA2 are not implemented on RFM69W, hence the max output power is 13dBm
// +17dBm and +20dBm are possible on RFM69HW
// +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**)
// +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)**
// +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet)
/* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | RF_PALEVEL_OUTPUTPOWER_11100},
/* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, // over current protection (default is 95mA)
// RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4KHz)
/* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, // (BitRate < 2 * RxBw)
/* 0x1e */ { REG_AFCFEI, RF_AFCFEI_FEI_START | RF_AFCFEI_AFCAUTOCLEAR_ON | RF_AFCFEI_AFCAUTO_ON},
//for BR-19200: /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 },
/* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_10 | RF_DIOMAPPING1_DIO3_01 | RF_DIOMAPPING1_DIO1_11}, // DIO0 is the only IRQ we're using
/* 0x26 */ { REG_DIOMAPPING2, RF_DIOMAPPING2_DIO5_11 | RF_DIOMAPPING2_CLKOUT_OFF }, // DIO5 ClkOut disable for power saving
/* 0x28 */ { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN }, // writing to this bit ensures that the FIFO & status flags are reset
/* 0x29 */ { REG_RSSITHRESH, 220 }, // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm
///* 0x2D */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE } // default 3 preamble bytes 0xAAAAAA
/* 0x2E */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_3 | RF_SYNC_TOL_0 },
/* 0x2F */ { REG_SYNCVALUE1, 0xAA }, // attempt to make this compatible with sync1 byte of RFM12B lib
/* 0x30 */ { REG_SYNCVALUE2, 0x2d }, // NETWORK ID
/* 0x31 */ { REG_SYNCVALUE3, networkID},
/* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_FIXED | RF_PACKET1_DCFREE_OFF | RF_PACKET1_CRC_OFF | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF },
/* 0x38 */ { REG_PAYLOADLENGTH, 0 }, // in variable length mode: the max frame size, not used in TX
///* 0x39 */ { REG_NODEADRS, nodeID }, // turned off because we're not using address filtering
/* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty
/* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_OFF | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
//for BR-19200: /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
/* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA1 }, // run DAGC continuously in RX mode for Fading Margin Improvement, recommended default for AfcLowBetaOn=0
{255, 0}
};
// Timer for ms waits
t.start();
_slaveSelectPin = 1;
// Setup the spi for 8 bit data : 1RW-bit 7 adressbit and 8 databit
// second edge capture, with a 10MHz clock rate
_spi.format(8,0);
_spi.frequency(4000000);
#define TIME_OUT 500
int j=0;
start_to = t.read_ms() ;
do writeReg(REG_SYNCVALUE1, 0xaa); while (readReg(REG_SYNCVALUE1) != 0xaa && t.read_ms()-start_to < TIME_OUT);
if (t.read_ms()-start_to >= TIME_OUT) return myresult;
//SS.printf("0xAA written\n\r");
// Set time out
start_to = t.read_ms() ;
do writeReg(REG_SYNCVALUE1, 0x55); while (readReg(REG_SYNCVALUE1) != 0x55 && t.read_ms()-start_to < TIME_OUT);
if (t.read_ms()-start_to >= TIME_OUT) return myresult;
for (uint8_t i = 0; CONFIG[i][0] != 255; i++){
writeReg(CONFIG[i][0], CONFIG[i][1]);
j=readReg(CONFIG[i][0]);
//SS.printf("reg 0x%04x Value 0x%04x read 0x%04x\n\r",CONFIG[i][0], CONFIG[i][1], j);
}// Encryption is persistent between resets and can trip you up during debugging.
// Disable it during initialization so we always start from a known state.
//encrypt(0);
readAllRegs();
//setHighPower(_isRFM69HW); // called regardless if it's a RFM69W or RFM69HW
//setMode(RF69_MODE_STANDBY);
// Set up interrupt handler
start_to = t.read_ms() ;
while (((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00) && t.read_ms()-start_to < TIME_OUT); // Wait for ModeReady
if (t.read_ms()-start_to >= TIME_OUT) return myresult;
_interrupt.rise(this, &RFM69::isr0);
myresult=true;
_address = nodeID;
return myresult;
}
// return the frequency (in Hz)
uint16_t crc16(uint16_t crc, uint8_t a)
{
int i;
crc ^= a;
for (i = 0; i < 8; ++i)
{
if (crc & 1)
crc = (crc >> 1) ^ 0xA001;
else
crc = (crc >> 1);
}
return crc;
}
uint32_t RFM69::getFrequency()
{
return RF69_FSTEP * (((uint32_t) readReg(REG_FRFMSB) << 16) + ((uint16_t) readReg(REG_FRFMID) << 8) + readReg(REG_FRFLSB));
}
// set the frequency (in Hz)
void RFM69::setFrequency(uint32_t freqHz)
{
uint8_t oldMode = _mode;
if (oldMode == RF69_MODE_TX) {
setMode(RF69_MODE_RX);
}
freqHz /= RF69_FSTEP; // divide down by FSTEP to get FRF
writeReg(REG_FRFMSB, freqHz >> 16);
writeReg(REG_FRFMID, freqHz >> 8);
writeReg(REG_FRFLSB, freqHz);
if (oldMode == RF69_MODE_RX) {
setMode(RF69_MODE_SYNTH);
}
setMode(oldMode);
}
void RFM69::setMode(uint8_t newMode)
{
if (newMode == _mode)
return;
switch (newMode) {
case RF69_MODE_TX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER);
if (_isRFM69HW) setHighPowerRegs(true);
break;
case RF69_MODE_RX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER);
if (_isRFM69HW) setHighPowerRegs(false);
break;
case RF69_MODE_SYNTH:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER);
break;
case RF69_MODE_STANDBY:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY);
break;
case RF69_MODE_SLEEP:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP);
break;
default:
return;
}
// we are using packet mode, so this check is not really needed
// but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode
while (_mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
_mode = newMode;
}
void RFM69::sleep(bool onOFF) {
if (onOFF) setMode(RF69_MODE_SLEEP);
else setMode(RF69_MODE_STANDBY);
}
void RFM69::setAddress(uint8_t addr)
{
_address = addr;
writeReg(REG_NODEADRS, _address);
}
void RFM69::setNetwork(uint8_t networkID)
{
writeReg(REG_SYNCVALUE2, networkID);
}
// set output power: 0 = min, 31 = max
// this results in a "weaker" transmitted signal, and directly results in a lower RSSI at the receiver
void RFM69::setPowerLevel(uint8_t powerLevel)
{
_powerLevel = powerLevel;
writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0xE0) | (_powerLevel > 31 ? 31 : _powerLevel));
}
bool RFM69::canSend()
{
if (_mode == RF69_MODE_RX && PAYLOADLEN == 0 && readRSSI() < CSMA_LIMIT) // if signal stronger than -100dBm is detected assume channel activity
{
setMode(RF69_MODE_STANDBY);
return true;
}
return false;
}
void RFM69::send(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK)
{
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
uint32_t now = t.read_ms();
while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone();
sendFrame(toAddress, buffer, bufferSize, requestACK, false);
}
// to increase the chance of getting a packet across, call this function instead of send
// and it handles all the ACK requesting/retrying for you :)
// The only twist is that you have to manually listen to ACK requests on the other side and send back the ACKs
// The reason for the semi-automaton is that the lib is interrupt driven and
// requires user action to read the received data and decide what to do with it
// replies usually take only 5..8ms at 50kbps@915MHz
bool RFM69::sendWithRetry(uint8_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t retries, uint8_t retryWaitTime) {
uint32_t sentTime;
for (uint8_t i = 0; i <= retries; i++)
{
send(toAddress, buffer, bufferSize, true);
sentTime = t.read_ms();
while (t.read_ms() - sentTime < retryWaitTime)
{
if (ACKReceived(toAddress))
{
//Serial.print(" ~ms:"); Serial.print(t.read_ms() - sentTime);
return true;
}
}
//Serial.print(" RETRY#"); Serial.println(i + 1);
}
return false;
}
// should be polled immediately after sending a packet with ACK request
bool RFM69::ACKReceived(uint8_t fromNodeID) {
if (receiveDone())
return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED;
return false;
}
// check whether an ACK was requested in the last received packet (non-broadcasted packet)
bool RFM69::ACKRequested() {
return ACK_REQUESTED && (TARGETID != RF69_BROADCAST_ADDR);
}
// should be called immediately after reception in case sender wants ACK
void RFM69::sendACK(const void* buffer, uint8_t bufferSize) {
uint8_t sender = SENDERID;
int16_t _RSSI = RSSI; // save payload received RSSI value
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
uint32_t now = t.read_ms();
while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone();
sendFrame(sender, buffer, bufferSize, false, true);
RSSI = _RSSI; // restore payload RSSI
}
void RFM69::sendFrame(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK, bool sendACK)
{
// Serial Ser(USBTX,USBRX);
// Ser.baud(115200);
char MyBuff[50];
int TXStart = t.read_ms() ;
//Ser.printf("sendFrame address %d size %d\n\r",toAddress,bufferSize);
setMode(RF69_MODE_STANDBY); // turn off receiver to prevent reception while filling fifo
while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00)wait_us(10); // wait for ModeReady
writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent"
//if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN;
uint8_t txstate = 0, i = 0,next=0,j=0;
uint16_t crc=crc16(0xffff,MyNetworkID);
uint8_t parity=MyNetworkID^(MyNetworkID<<4);
parity=parity^(parity<<2);//2 bit even parity in bit 6 and 7 msb
fifoFlush();
setMode(RF69_MODE_TX);
//while (readReg(REG_IRQFLAGS1 & RF_IRQFLAGS1_MODEREADY) == 0x00 && t.read_ms()-TXStart < TIME_OUT)
//{
//wait_us(10);
//}
//Ser.printf("Reg val %d \n\r",bufferSize);
while(txstate < 7)
{
if ((readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_FIFOFULL) == 0)
{
switch(txstate)
{
case 0: next=MyNodeID ; txstate++; break;
case 1: next=(bufferSize); txstate++; break;
case 2: next=((uint8_t*)buffer)[i++]; if(i==bufferSize) txstate++; break;
case 3: next=(uint8_t)crc; txstate++; break;
case 4: next=(uint8_t)(crc>>8); txstate++; break;
case 5:
case 6: next=0xAA; txstate++; break; // dummy bytes (if < 2, locks up)
}
if(txstate<4) crc = crc16(crc, next);
writeReg(REG_FIFO, next);
MyBuff[j++]=next;
//Ser.printf("state %d count %d Data %d \n\r",txstate,i,next);
}
else {
wait_us(100);// fifo is full wait until it is transmitted
}
}
//Ser.printf("length %d \n\r",j);
for (i=0; i<j; i++)
{
// Ser.printf("count %d val %d\n\r",i,MyBuff[i]);
}
//setMode(RF69_MODE_TX);
//writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER);
while (_interrupt == 0 && t.read_ms() - TXStart < RF69_TX_LIMIT_MS)wait_us(10); // wait for DIO0 to turn HIGH signalling transmission finish
setMode(RF69_MODE_STANDBY);
//writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00);
/*// control byte
uint8_t CTLbyte = 0x00;
if (sendACK)
CTLbyte = 0x80;
else if (requestACK)
CTLbyte = 0x40;
select();
_spi.write(REG_FIFO | 0x80);
_spi.write(bufferSize + 3);
_spi.write(toAddress);
_spi.write(_address);
_spi.write(CTLbyte);
for (uint8_t i = 0; i < bufferSize; i++)
_spi.write(((uint8_t*) buffer)[i]);
unselect();
// no need to wait for transmit mode to be ready since its handled by the radio
setMode(RF69_MODE_TX);
uint32_t txStart = t.read_ms();
while (_interrupt == 0 && t.read_ms() - txStart < RF69_TX_LIMIT_MS); // wait for DIO0 to turn HIGH signalling transmission finish
//while (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT == 0x00); // wait for ModeReady
setMode(RF69_MODE_STANDBY);
*/
}
// ON = disable filtering to capture all frames on network
// OFF = enable node/broadcast filtering to capture only frames sent to this/broadcast address
void RFM69::promiscuous(bool onOff) {
_promiscuousMode = onOff;
//writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | (onOff ? RF_PACKET1_ADRSFILTERING_OFF : RF_PACKET1_ADRSFILTERING_NODEBROADCAST));
}
void RFM69::setHighPower(bool onOff) {
_isRFM69HW = onOff;
writeReg(REG_OCP, _isRFM69HW ? RF_OCP_OFF : RF_OCP_ON);
if (_isRFM69HW) // turning ON
writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0x1F) | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON); // enable P1 & P2 amplifier stages
else
writeReg(REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | _powerLevel); // enable P0 only
}
void RFM69::setHighPowerRegs(bool onOff) {
writeReg(REG_TESTPA1, onOff ? 0x5D : 0x55);
writeReg(REG_TESTPA2, onOff ? 0x7C : 0x70);
}
/*
void RFM69::setCS(uint8_t newSPISlaveSelect) {
DigitalOut _slaveSelectPin(newSPISlaveSelect);
_slaveSelectPin = 1;
}
*/
// for debugging
void RFM69::readAllRegs( )
{
uint8_t regVal,regAddr;
for (regAddr = 1; regAddr <= 0x4F; regAddr++)
{
select();
_spi.write(regAddr & 0x7F); // send address + r/w bit
regVal = _spi.write(0);
//SD.printf("ADDR 0x%02x REG 0x%02x \n\r",regAddr,regVal);
/* Serial.print(regAddr, HEX);
Serial.print(" - ");
Serial.print(regVal,HEX);
Serial.print(" - ");
Serial.println(regVal,BIN);*/
unselect();
}
}
uint8_t RFM69::readTemperature(int8_t calFactor) // returns centigrade
{
uint8_t oldMode = _mode;
setMode(RF69_MODE_STANDBY);
writeReg(REG_TEMP1, RF_TEMP1_MEAS_START);
while ((readReg(REG_TEMP1) & RF_TEMP1_MEAS_RUNNING));
setMode(oldMode);
return ~readReg(REG_TEMP2) + COURSE_TEMP_COEF + calFactor; // 'complement' corrects the slope, rising temp = rising val
} // COURSE_TEMP_COEF puts reading in the ballpark, user can add additional correction
void RFM69::rcCalibration()
{
writeReg(REG_OSC1, RF_OSC1_RCCAL_START);
while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00);
}
// C++ level interrupt handler for this instance
void RFM69::interruptHandler() {
if (_mode == RF69_MODE_RX && (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY))
{
setMode(RF69_MODE_STANDBY);
select();
_spi.write(REG_FIFO & 0x7F);
PAYLOADLEN = _spi.write(0);
PAYLOADLEN = PAYLOADLEN > 66 ? 66 : PAYLOADLEN; // precaution
TARGETID = _spi.write(0);
if(!(_promiscuousMode || TARGETID == _address || TARGETID == RF69_BROADCAST_ADDR) // match this node's address, or broadcast address or anything in promiscuous mode
|| PAYLOADLEN < 3) // address situation could receive packets that are malformed and don't fit this libraries extra fields
{
PAYLOADLEN = 0;
unselect();
receiveBegin();
return;
}
DATALEN = PAYLOADLEN - 3;
SENDERID = _spi.write(0);
uint8_t CTLbyte = _spi.write(0);
ACK_RECEIVED = CTLbyte & 0x80; // extract ACK-received flag
ACK_REQUESTED = CTLbyte & 0x40; // extract ACK-requested flag
for (uint8_t i = 0; i < DATALEN; i++)
{
DATA[i] = _spi.write(0);
}
if (DATALEN < RF69_MAX_DATA_LEN) DATA[DATALEN] = 0; // add null at end of string
unselect();
setMode(RF69_MODE_RX);
}
RSSI = readRSSI();
}
// These are low level functions that call the interrupt handler for the correct instance of RFM69.
void RFM69::isr0()
{
interruptHandler();
}
void RFM69::receiveBegin() {
DATALEN = 0;
SENDERID = 0;
TARGETID = 0;
PAYLOADLEN = 0;
ACK_REQUESTED = 0;
ACK_RECEIVED = 0;
RSSI = 0;
if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); // set DIO0 to "PAYLOADREADY" in receive mode
setMode(RF69_MODE_RX);
_interrupt.enable_irq();
}
bool RFM69::receiveDone() {
_interrupt.disable_irq(); // re-enabled in unselect() via setMode() or via receiveBegin()
if (_mode == RF69_MODE_RX && PAYLOADLEN > 0)
{
setMode(RF69_MODE_STANDBY); // enables interrupts
return true;
}
else if (_mode == RF69_MODE_RX) // already in RX no payload yet
{
_interrupt.enable_irq(); // explicitly re-enable interrupts
return false;
}
receiveBegin();
return false;
}
// To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP");
// To disable encryption: radio.encrypt(null) or radio.encrypt(0)
// KEY HAS TO BE 16 bytes !!!
void RFM69::encrypt(const char* key) {
setMode(RF69_MODE_STANDBY);
if (key != 0)
{
select();
_spi.write(REG_AESKEY1 | 0x80);
for (uint8_t i = 0; i < 16; i++)
_spi.write(key[i]);
unselect();
}
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (key ? 1 : 0));
}
int16_t RFM69::readRSSI(bool forceTrigger) {
int16_t rssi = 0;
if (forceTrigger)
{
// RSSI trigger not needed if DAGC is in continuous mode
writeReg(REG_RSSICONFIG, RF_RSSI_START);
while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // wait for RSSI_Ready
}
rssi = -readReg(REG_RSSIVALUE);
rssi >>= 1;
return rssi;
}
uint8_t RFM69::readReg(uint8_t addr)
{
select();
_spi.write(addr & 0x7F); // Send the address with the write mask off
uint8_t val = _spi.write(0); // The written value is ignored, reg value is read
unselect();
return val;
}
void RFM69::writeReg(uint8_t addr, uint8_t value)
{
select();
_spi.write(addr | 0x80); // Send the address with the write mask on
_spi.write(value); // New value follows
unselect();
}
// select the transceiver
void RFM69::select() {
_interrupt.disable_irq(); // Disable Interrupts
/* // set RFM69 SPI settings
SPI.setDataMode(SPI_MODE0);
SPI.setBitOrder(MSBFIRST);
SPI.setClockDivider(SPI_CLOCK_DIV4); // decided to slow down from DIV2 after SPI stalling in some instances, especially visible on mega1284p when RFM69 and FLASH chip both present */
_slaveSelectPin = 0;
}
// UNselect the transceiver chip
void RFM69::unselect() {
_slaveSelectPin = 1;
_interrupt.enable_irq(); // Enable Interrupts
}
void RFM69::sendWait()
{
while (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT)
{
wait_ms(1);
};
}
void RFM69::fifoFlush()
{
while (readReg(REG_IRQFLAGS2) & (RF_IRQFLAGS2_FIFONOTEMPTY | RF_IRQFLAGS2_FIFOOVERRUN))
readReg(REG_FIFO);
}