wireless_uart
Dependencies: fsl_phy_mcr20a fsl_smac mbed-rtos mbed
Fork of mcr20_wireless_uart by
main.cpp
- Committer:
- sam_grove
- Date:
- 2015-03-05
- Revision:
- 2:3e7685cfb2a7
- Parent:
- 1:6055c6873f85
- Child:
- 3:a38ad504a18c
File content as of revision 2:3e7685cfb2a7:
#include "mbed.h" #include "driverDebug.h" #include "socket_api.h" #include "net_interface.h" #include "system_event.h" #include "string.h" #include "net_nwk_scan.h" #include "socket_security.h" #include "nwk_stats_api.h" #include "multicast_api.h" #include "nsdynmemLIB.h" #include "randLIB.h" #include "arm_hal_timer.h" #include "common_functions.h" #include "driverRFPhy.h" #include "driverAtmelRFInterface.h" #include "nsdl_support.h" #include "node_cfg.h" #if NODE_SENSOR_STATION // #include "DHT.h" #include "BMP085.h" #endif /*** DEBUG ******/ #define DEBUG 1 #if DEBUG #define debug printf #else #define debug(...) "" #endif // DEBUG /******* Hardware Definition **********/ #if NODE_CONTROLLER DigitalOut ledR(PTB22); // RGB - Red LED DigitalOut ledG(PTE26); // RGB - Green LED DigitalOut ledB(PTB21); // RGB - Blue LED InterruptIn TAP_INT(PTC6); // INT1 from FXOS8700Q #endif #if NODE_HOME DigitalOut light(D2); DigitalOut fire(D3); DigitalOut fan(D4); InterruptIn motion(D6); DigitalIn door(D8); #endif #if NODE_SENSOR_STATION //DHT sensor(D2, DHT11); BMP085 barometer(D14, D15); AnalogIn moisture(A0); AnalogIn HCHO(A1); AnalogIn UVsensor(A2); #endif /******* Timers Definitions ************/ #define RETRY_TIMER 1 #define NSP_REGISTRATION_TIMER 2 #if NODE_CONTROLLER #define ACCELEROMETER_TIMER 3 #endif #if NODE_HOME #define DOOR_CHECK_TIMER 4 #endif void app_heap_error_handler(heap_fail_t event); void tasklet_main(arm_event_s *event); void button_main(arm_event_s *event); #define APP_DEV_HEAP_SIZE 6000 static uint8_t app_defined_stack_heap[APP_DEV_HEAP_SIZE]; static int8_t main_tasklet_id = -1; static const uint8_t app_MAC_address[8] = NODE_MAC_ADDRESS; static int8_t rf_phy_device_register_id = -1; static int8_t net_6lowpan_id = -1; static uint32_t channel_list = 0x07FFF800; // All channels int8_t coap_udp_socket = -1; #define AUDP_SOCKET_PORT 61630 #define RECV_CTRL_UDP_PORT 1050 // receive #define SEND_CTRL_UDP_PORT 1060 // send /** Used for Receive Data source Address store*/ static ns_address_t app_src; static sn_nsdl_addr_s sn_addr_s; static int access_point_status = 0; link_layer_setups_s app_link_info; link_layer_address_s app_link_address_info; network_layer_address_s app_nd_address_info; /* Prototype functions */ void NSDL_receive_socket(void *cb); void NSP_registration(void); extern void create_lqi_resource(uint8_t); void* own_alloc(uint16_t size); void own_free(void *ptr); /*************** Application variables ***********************/ uint8_t batteryLevel = 100; enum LED {NONE, RED, GREEN, BLUE}; int ledState = NONE; /* #defines, definitions and declarations according node profile */ #if NODE_HOME #define DOOR_CHECK_TIME 1000 uint8_t door_last_state = 0; /* Since the PIR Motion detector throws a (false) trigger everytime the other sensors/actuators change (possibly an interference), we will need to disable it for 1s. So every time the sensors/actuators change, we set a variable which is reset in the DOOR_CHECK_TIMER. This variable needs to be cleared to consider a real motion detection */ uint8_t motion_disable = 0; int8_t ctrl_udp_socket = -1; void ctrl_udp_receive(void * cb); void ctrl_udp_send(uint8_t cmd); #endif #if NODE_CONTROLLER int8_t ctrl_udp_socket = -1; void empty_udp_receive(void * cb); void ctrl_udp_send(uint8_t cmd); #include "FXOS8700Q_TD.h" #define ACCEL_SAMPLE_TIME 200 FXOS8700Q accel( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // Proper Ports and I2C Address for K64F Freedom board bool accel_enable = 1; void tap_detector_handler(void) { printf("Tap Detected!\r\n"); switch(ledState) { case NONE: break; case RED: ctrl_udp_send('R'); break; case GREEN: ctrl_udp_send('G'); break; case BLUE: ctrl_udp_send('B'); break; } } void update_LED(void) { switch(ledState) { case NONE: ledState = GREEN; ledR = 1; ledG = 0; ledB = 1; break; case GREEN: ledState = RED; ledR = 0; ledG = 1; ledB = 1; break; case RED: ledState = BLUE; ledR = 1; ledG = 1; ledB = 0; break; case BLUE: ledState = NONE; ledR = 1; ledG = 1; ledB = 1; break; } } #endif #if 1 void printf_array(uint8_t *ptr , uint16_t len) { uint16_t i; for(i=0; i<len; i++) { if(i) { if(i%16== 0) { debug("\r\n"); if(len > 64) { uint8_t x =254; while(x--); } } else { debug(":"); } } debug_hex(*ptr++); } debug("\r\n"); } void debug_integer(uint8_t width, uint8_t base, int16_t n) { uint8_t bfr[8]; uint8_t *ptr = bfr; uint8_t ctr = 0; if (width > 7) width = 7; ptr += width; *ptr-- = 0; if (base == 16) { do { *ptr = n & 0x0F; if (*ptr < 10) *ptr += '0'; else *ptr += ('A'-10); ptr--; n >>= 4; ctr++; }while((ctr & 1) || (ctr < width)); } else { uint8_t negative = 0; if (n < 0) { negative = 1; n = -n; } ctr++; do { *ptr-- = (n % 10) + '0'; n /= 10; ctr++; }while ((ctr < width) && n); if (negative) { *ptr-- = '-'; } else { *ptr-- = ' '; } } ptr++; //debug_send(ptr); debug((const char *)ptr); } void printf_ipv6_address(uint8_t *addr_ptr) { if(addr_ptr) { uint8_t i, d_colon = 0; uint16_t current_value = 0, last_value = 0; for(i=0; i< 16;i += 2) { current_value = (*addr_ptr++ << 8); current_value += *addr_ptr++; if(i == 0) { last_value = current_value; debug_hex(current_value >> 8); debug_hex(current_value ); debug(":"); } else { if(current_value == 0) { if(i== 14) { debug(":"); //debug_put('0'); debug("0"); } else { if(last_value == 0) { if(d_colon == 0) { d_colon=1; } } else { if(d_colon == 2) { //debug_put('0'); debug("0"); debug(":"); } } } } else { if(last_value == 0) { if(d_colon == 1) { debug(":"); d_colon = 2; } else { //debug_put('0'); debug("0"); debug(":"); } } if(current_value > 0x00ff) { debug_hex(current_value >> 8); } debug_hex(current_value ); if(i< 14) { debug(":"); } } last_value = current_value; } } } else { debug("Address Print: pointer NULL"); } debug("\r\n"); } #endif #if NODE_HOME void motion_handler(void) { if (motion_disable) return; printf("***************Motion Detected!**********************\r\n"); if (door) ctrl_udp_send('O'); else ctrl_udp_send('C'); } #endif int main() { #if NODE_CONTROLLER ledR = 1; ledG = 1; ledB = 1; TAP_INT.rise(&tap_detector_handler); #endif #if NODE_HOME light = 0; motion.rise(&motion_handler); #endif debug("\r\nApplication Start\r\n"); ns_dyn_mem_init(app_defined_stack_heap, APP_DEV_HEAP_SIZE, app_heap_error_handler,0); rf_set_mac_address(app_MAC_address); // init RF interface debug("Init RF Interface...\r\n"); rf_phy_device_register_id = rf_device_register(); randLIB_seed_random(); debug("Init ARM Timer...\r\n"); arm_timer_init();//Init Timer //Init nanostack & Event OS debug("Init Net Core...\r\n"); net_init_core(); debug("Create Tasklets...\r\n"); main_tasklet_id = arm_ns_tasklet_create(&tasklet_main); if(main_tasklet_id < 0) { //Tasklet cerate fail error("Tasklet create fail.."); while(1); } debug("Event Dispatch\r\n"); event_dispatch(); } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } void app_heap_error_handler(heap_fail_t event) { switch (event) { case NS_DYN_MEM_NULL_FREE: break; case NS_DYN_MEM_DOUBLE_FREE: break; case NS_DYN_MEM_ALLOCATE_SIZE_NOT_VALID: break; case NS_DYN_MEM_POINTER_NOT_VALID: break; case NS_DYN_MEM_HEAP_SECTOR_CORRUPTED: break; case NS_DYN_MEM_HEAP_SECTOR_UNITIALIZED: break; default: break; } while(1); } /** * \brief Network state event handler. * \param event show network start response or current network state. * * - NET_READY: Save NVK peristant data to NVM and Net role * - NET_NO_BEACON: Link Layer Active Scan Fail, Stack is Already at Idle state * - NET_NO_ND_ROUTER: No ND Router at current Channel Stack is Already at Idle state * - NET_BORDER_ROUTER_LOST: Connection to Access point is lost wait for Scan Result * - NET_PARENT_POLL_FAIL: Host should run net start without any PAN-id filter and all channels * - NET_PANA_SERVER_AUTH_FAIL: Pana Authentication fail, Stack is Already at Idle state */ void app_parse_network_event(arm_event_s *event ) { arm_nwk_interface_status_type_e status = (arm_nwk_interface_status_type_e)event->event_data; switch (status) { case ARM_NWK_BOOTSTRAP_READY: /* NEtwork is ready and node is connected to Access Point */ if(access_point_status==0) { uint8_t temp_ipv6[16]; debug("Network Connection Ready\r\n"); access_point_status=1; //Read Address if( arm_nwk_nd_address_read(net_6lowpan_id,&app_nd_address_info) != 0) { debug("ND Address read fail\r\n"); } else { debug("ND Access Point: "); printf_ipv6_address(app_nd_address_info.border_router); //REVIEW debug("ND Prefix 64: "); printf_array(app_nd_address_info.prefix, 8); //REVIEW if(arm_net_address_get(net_6lowpan_id,ADDR_IPV6_GP,temp_ipv6) == 0) { debug("GP IPv6: "); printf_ipv6_address(temp_ipv6); //REVIEW } } if( arm_nwk_mac_address_read(net_6lowpan_id,&app_link_address_info) != 0) { debug("MAC Address read fail\r\n"); } else { uint8_t temp[2]; common_write_16_bit(app_link_address_info.mac_short,temp); debug("MAC 16-bit: "); printf_array(temp, 2); //REVIEW common_write_16_bit(app_link_address_info.PANId,temp); debug("PAN-ID: "); printf_array(temp, 2); //REVIEW debug("MAC 64-bit: "); printf_array(app_link_address_info.long_euid64, 8); //REVIEW debug("EUID64(Based on MAC 64-bit address): "); printf_array(app_link_address_info.euid64, 8); //REVIEW } } break; case ARM_NWK_NWK_SCAN_FAIL: /* Link Layer Active Scan Fail, Stack is Already at Idle state */ debug("Link Layer Scan Fail: No Beacons\r\n"); access_point_status=0; //dnssd_disable(1); break; case ARM_NWK_IP_ADDRESS_ALLOCATION_FAIL: /* No ND Router at current Channel Stack is Already at Idle state */ debug("ND Scan/ GP REG fail\r\n"); access_point_status=0; //dnssd_disable(1); break; case ARM_NWK_NWK_CONNECTION_DOWN: /* Connection to Access point is lost wait for Scan Result */ debug("ND/RPL scan new network\r\n"); access_point_status=0; break; case ARM_NWK_NWK_PARENT_POLL_FAIL: access_point_status=0; break; case ARM_NWK_AUHTENTICATION_FAIL: debug("Network authentication fail\r\n"); access_point_status=0; break; default: debug_hex(status); //REVIEW debug("Unknow event"); break; } if(access_point_status == 0) { //Set Timer for new Trig timer_sys_event(RETRY_TIMER, 10000); } } /** * \brief Handler for events sent to the application. * \param event received event. * * - EV_NETWORK event, Network Event state event handler * - EV_INIT, Set Certificate Chain list, init multicast, Start net start if NVM have session * - EV_DEBUG, Terminal handler */ void tasklet_main(arm_event_s *event) { if(event->sender == 0) { arm_library_event_type_e event_type; event_type = (arm_library_event_type_e)event->event_type; switch(event_type) { case ARM_LIB_NWK_INTERFACE_EVENT: /* Network Event state event handler */ debug("Event: ARM_LIB_NWK_INTERFACE\r\n"); app_parse_network_event(event); break; case ARM_LIB_TASKLET_INIT_EVENT: /*Init event from stack at start-up*/ debug("Event: ARM_LIB_TASKLET_INIT\r\n"); #if NODE_CONTROLLER timer_sys_event(ACCELEROMETER_TIMER, ACCEL_SAMPLE_TIME); #endif multicast_set_parameters(10,0,20,3,75 ); #if NODE_HOME /* open a socket to support control from NODE_CONTROLLER */ ctrl_udp_socket = socket_open(SOCKET_UDP, RECV_CTRL_UDP_PORT, ctrl_udp_receive); /* init a timer to check door state */ timer_sys_event(DOOR_CHECK_TIMER, DOOR_CHECK_TIME); #endif #if NODE_CONTROLLER /* open a socket to support control for REMOTE_NODE */ ctrl_udp_socket = socket_open(SOCKET_UDP, SEND_CTRL_UDP_PORT, empty_udp_receive); #endif net_6lowpan_id = arm_nwk_interface_init(NET_INTERFACE_RF_6LOWPAN, rf_phy_device_register_id, "6LoWPAN_BORDER_ROUTER"); if(net_6lowpan_id < 0) { debug("Interface Generate Fail\r\n"); while(1); } else { //SET Bootsrap if(arm_nwk_interface_configure_6lowpan_bootstrap_set(net_6lowpan_id, NET_6LOWPAN_HOST, 1) != 0) // Last parameter enables MLE protocol { //Bootsrap SET fail debug("Bootstrap Fail\r\n"); while(1); } else { int8_t retval = -1; arm_nwk_6lowpan_gp_address_mode(net_6lowpan_id, NET_6LOWPAN_GP16_ADDRESS, NODE_SHORT_ADDRESS, 1); // 5 = short address for link-layer // 1 = generate automatically if duplicate address is encountered arm_nwk_link_layer_security_mode(net_6lowpan_id, NET_SEC_MODE_NO_LINK_SECURITY, 0, 0); arm_nwk_6lowpan_link_scan_paramameter_set(rf_phy_device_register_id, channel_list, 5); retval = arm_nwk_interface_up(net_6lowpan_id); if(retval != 0) { //6Lowpan Bootsrap start fail debug("6LowPAN Bootstrap start Fail\r\n"); while(1); } else { //6Lowpan Bootsrap start OK debug("6LowPAN Bootstrap Start OK\r\n"); } // open sockets coap_udp_socket = socket_open(SOCKET_UDP, AUDP_SOCKET_PORT, NSDL_receive_socket); // Start NSDL nsdl_run(); } timer_sys_event(NSP_REGISTRATION_TIMER, RD_UPDATE_PERIOD); } break; case ARM_LIB_SYSTEM_TIMER_EVENT: timer_sys_event_cancel(event->event_id); if (event->event_id == NSP_REGISTRATION_TIMER) { printf("Time to register...\r\n"); NSP_registration(); #if BATTERY batteryLevel -= 10; if (batteryLevel == 0) batteryLevel = 100; #endif timer_sys_event(NSP_REGISTRATION_TIMER, RD_UPDATE_PERIOD); } else if (event->event_id == RETRY_TIMER) { debug("Event: ARM_LIB_SYSTEM_TIMER (event_id = 1)\r\n"); int8_t retval = -1; retval = arm_nwk_interface_up(net_6lowpan_id); if(retval != 0) { //6Lowpan Bootsrap start fail debug("6LowPAN Bootstrap Start Failure\r\n"); while(1); } else { //6Lowpan Bootsrap start OK debug("6LowPAN Bootstrap Start OK\r\n"); } } #if NODE_CONTROLLER else if (event->event_id == ACCELEROMETER_TIMER) { if (accel.getAccX() < -0.85f && accel_enable) { accel_enable = 0; update_LED(); } if (accel.getAccX() > -0.35f) accel_enable = 1; timer_sys_event(ACCELEROMETER_TIMER, ACCEL_SAMPLE_TIME); } #endif #if NODE_HOME else if (event->event_id == DOOR_CHECK_TIMER) { uint8_t door_state = door.read(); if (door_state != door_last_state) { door_last_state = door_state; printf("Door state %d\r\n", door_state); } motion_disable = 0; timer_sys_event(DOOR_CHECK_TIMER, DOOR_CHECK_TIME); } #endif break; default: break; } } } void NSDL_receive_socket(void * cb) { socket_callback_t * cb_res =0; int16_t length; cb_res = (socket_callback_t *) cb; uint8_t *payload; if(cb_res->event_type == SOCKET_DATA) { debug("LINK LQI:"); debug_hex(cb_res->LINK_LQI); create_lqi_resource(cb_res->LINK_LQI); debug("\r\n"); if ( cb_res->d_len > 0) { payload = (uint8_t *) own_alloc(cb_res->d_len); if(payload) { //Read data to the RX buffer length = socket_read(cb_res->socket_id, &app_src, payload, cb_res->d_len); //replace rx_buffer payload if(length) { if(cb_res->socket_id == coap_udp_socket) { // Handles data received in UDP socket // Call application protocol parser. sn_addr_s.type = SN_NSDL_ADDRESS_TYPE_IPV6; sn_addr_s.addr_len = 16; sn_addr_s.port = app_src.identifier; sn_addr_s.addr_ptr = app_src.address; printf("Data 1\r\n"); if(sn_nsdl_process_coap(payload, length, &sn_addr_s)) // 0= ok, -1=failure { debug("Error processing CoAP packet\r\n"); } printf("Data 4\r\n"); } } own_free(payload); } } } #if 1 // enabled for debug else if(cb_res->event_type == SOCKET_TX_DONE) { //debug("*"); } else if(cb_res->event_type == SOCKET_NO_ROUTE) { debug("SOCKET_NO_ROUTE\r\n"); } else if(cb_res->event_type == SOCKET_TX_FAIL) { debug("SOCKET_TX_FAIL\r\n"); } #endif } #if NODE_HOME /****** Control UDP Socket Receive *******/ void ctrl_udp_receive(void * cb) { socket_callback_t * cb_res =0; int16_t length; cb_res = (socket_callback_t *) cb; if(cb_res->event_type == SOCKET_DATA) { uint8_t *payload = 0; /*Read Data*/ if ( cb_res->d_len > 0) { /*Read data to the RX buffer*/ payload = (uint8_t *) ns_dyn_mem_alloc(cb_res->d_len); if(payload) { /*Read data to the RX buffer*/ length = socket_read(cb_res->socket_id, &app_src, payload, cb_res->d_len); if(length) { uint8_t * ptr = payload ; /*Handles data received in UDP socket*/ debug("UDP Data From: "); printf_ipv6_address(&(app_src.address[0])); //REVIEW if(app_src.identifier == SEND_CTRL_UDP_PORT) // check source port to avoid interference { debug("Data: "); printf("%s\r\n",ptr); switch(payload[0]) { case 'R': fire = !fire; fan = 0; break; case 'G': light = !light; break; case 'B': fan = !fan; fire = 0; break; } motion_disable = 1; } } ns_dyn_mem_free(payload); } } else { debug("No Data\r\n"); socket_read(cb_res->socket_id, &app_src, NULL, 0); } } else if(cb_res->event_type == SOCKET_TX_DONE) { debug("UDP TX Done\r\n"); } /* No Route to Packet Destination Address */ else if(cb_res->event_type == SOCKET_NO_ROUTE) { debug("ND/RPL not ready\r\n"); } /* Link Layer TX Fail for socket packet */ else if(cb_res->event_type == SOCKET_TX_FAIL) { debug("Link Layer Tx fail\r\n"); } } void ctrl_udp_send(uint8_t cmd) { uint8_t * payload = 0; ns_address_t address; /*SET UDP echo Port*/ address.identifier = ALARM_CTRL_UDP_PORT; uint8_t node_address[16] = ALARM_IP_ADDRESS; payload = (uint8_t *) ns_dyn_mem_alloc(1); if(payload) { uint8_t *ptr = payload; memcpy(address.address,node_address,16); address.type = ADDRESS_IPV6; *ptr = cmd; if(socket_sendto(ctrl_udp_socket, &address, payload, (1)) != 0) { debug("Ctrl UDP Failed\r\n"); } else { debug("Ctrl UDP Ok\r\n"); } ns_dyn_mem_free(payload); } else { debug("No Heap for Ctrl UDP\r\n"); } } #endif #if NODE_CONTROLLER void ctrl_udp_send(uint8_t cmd) { uint8_t * payload = 0; ns_address_t address; /*SET UDP echo Port*/ address.identifier = RECV_CTRL_UDP_PORT; uint8_t node_address[16] = REMOTE_NODE; payload = (uint8_t *) ns_dyn_mem_alloc(1); if(payload) { uint8_t *ptr = payload; memcpy(address.address,node_address,16); address.type = ADDRESS_IPV6; *ptr = cmd; if(socket_sendto(ctrl_udp_socket, &address, payload, (1)) != 0) { debug("Ctrl UDP Failed\r\n"); } else { debug("Ctrl UDP Ok\r\n"); } ns_dyn_mem_free(payload); } else { debug("No Heap for Ctrl UDP\r\n"); } } // we don't expect to receive data void empty_udp_receive(void * cb) { } #endif