Library to control a QVGA TFT connected to SPI. You can use printf to print text The lib can handle different fonts, draw lines, circles, rect and bmp

Dependents:   TFT_Test1 SourceCodePro31-SB Mandelbrot Mindwave-screen ... more

See http://mbed.org/cookbook/SPI-driven-QVGA-TFT for details.

SPI_TFT.cpp

Committer:
dreschpe
Date:
2013-10-22
Revision:
18:52cbeede86f0
Parent:
16:2efcbb2814fa

File content as of revision 18:52cbeede86f0:

/* mbed library for 240*320 pixel display TFT based on HX8347D LCD Controller
 * Copyright (c) 2011 Peter Drescher - DC2PD
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */


// fix bmp padding for Bitmap function
// speed up pixel
// 30.12.11 fix cls
// 11.03.12 use DMA to speed up
// 15.03.12 use SSEL for TFT CS to enable DMA Register writes
// 06.04.12 fix SSEL CS problem
// 06.04.12 use direct access to the spi register to speed up the library.
// 11.09.12 switch back to using io pin as cs to avoid problems with SSEL CS.
// 21.09.12 fix Bug in BMP_16
// 11.10.12 patch from Hans Bergles to get SPI1 working again
// 03.02.13 add a switch to switch off DMA use for LPC11U24
// 04.03.13 add support for new Kinetis board
// 25.03.13 fix Bug in bitmap for Kinetis board
// 18.10.13 Better Circle function from Michael Ammann

#include "SPI_TFT.h"
#include "mbed.h"

#define BPP         16                  // Bits per pixel    

#if defined TARGET_LPC1768
#define USE_DMA                     // we use dma to speed up
#define NO_MBED_LIB                 // we write direct to the SPI register to speed up  
#endif

#if defined NO_DMA                      // if LPC1768 user want no DMA
#undef USE_DMA
#endif


//extern Serial pc;
//extern DigitalOut xx;     // debug !!

SPI_TFT::SPI_TFT(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, const char *name)
    : _spi(mosi, miso, sclk), _cs(cs), _reset(reset),GraphicsDisplay(name)
{
    orientation = 0;
    char_x = 0;
    #if defined TARGET_LPC1768
        if (mosi == p11 || mosi == P0_18){
            spi_port = 0;  // we must know the used SPI port to setup the DMA
            }
        else {
            spi_port = 1;
            }
    #endif
    tft_reset();
}

int SPI_TFT::width()
{
    if (orientation == 0 || orientation == 2) return 240;
    else return 320;
}


int SPI_TFT::height()
{
    if (orientation == 0 || orientation == 2) return 320;
    else return 240;
}


void SPI_TFT::set_orientation(unsigned int o)
{
    orientation = o;
    switch (orientation) {
        case 0:
            wr_reg(0x16, 0x08);
            break;
        case 1:
            wr_reg(0x16, 0x68);
            break;
        case 2:
            wr_reg(0x16, 0xC8);
            break;
        case 3:
            wr_reg(0x16, 0xA8);
            break;
    }
    WindowMax();
}


// write command to tft register

void SPI_TFT::wr_cmd(unsigned char cmd)
{
    _cs = 0;
    #if defined NO_MBED_LIB
        unsigned short spi_d;
        spi_d =  0x7000 | cmd ;
        if (spi_port == 0) {    // TFT on SSP0
            LPC_SSP0->DR = spi_d;
            // we have to wait for SPI IDLE to set CS back to high
            do {
            } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
        } else {
            LPC_SSP1->DR = spi_d;
            do {
            } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
        }
    #else  // use mbed lib
        #if defined TARGET_KL25Z  // 8 Bit SPI
            _spi.write(0x70);
            _spi.write(cmd);
        #else                     // 16 Bit SPI  
            unsigned short spi_d;
            spi_d =  0x7000 | cmd ;
            _spi.write(spi_d);      // mbed lib
        #endif
    #endif
    _cs = 1;
}


// write data to tft register
void SPI_TFT::wr_dat(unsigned char dat)
{
    _cs = 0;    
    #if defined NO_MBED_LIB
        unsigned short spi_d;
        spi_d =  0x7200 | dat;
        if (spi_port == 0) {    // TFT on SSP0
            LPC_SSP0->DR = spi_d;
            // we have to wait for SPI IDLE to set CS back to high
            do {
            } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
        } else {
            LPC_SSP1->DR = spi_d;
            do {
            } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
        }
    #else    // use mbed lib
        #if defined TARGET_KL25Z  // 8 Bit SPI
            _spi.write(0x72);
            _spi.write(dat);
        #else                     // 16 Bit SPI
            unsigned short spi_d;
            spi_d =  0x7200 | dat;
            _spi.write(spi_d);      
        #endif
    #endif
    _cs = 1;
}



// the HX8347-D controller do not use the MISO (SDO) Signal.
// This is a bug - ?
// A read will return 0 at the moment 

unsigned short SPI_TFT::rd_dat (void)
{
    unsigned short val = 0;

    //val = _spi.write(0x73ff);                /* Dummy read 1           */
    //val   = _spi.write(0x0000);              /* Read D8..D15           */
    return (val);
}

// write to a TFT register
void SPI_TFT::wr_reg (unsigned char reg, unsigned char val)
{
    wr_cmd(reg);
    wr_dat(val);
}

// read from a TFT register
unsigned short SPI_TFT::rd_reg (unsigned char reg)
{
    wr_cmd(reg);
    return(rd_dat());
}

// setup TFT controller - this is called by constructor
void SPI_TFT::tft_reset()
{
#if defined TARGET_KL25Z           // 8 Bit SPI
    _spi.format(8,3);
#else                              // 16 Bit SPI  
    _spi.format(16,3);                 // 16 bit spi mode 3
#endif
    _spi.frequency(48000000);          // 48 Mhz SPI clock
    _cs = 1;                           // cs high
    _reset = 0;                        // display reset

    wait_us(50);
    _reset = 1;                       // end reset
    wait_ms(5);

    /* Start Initial Sequence ----------------------------------------------------*/
    wr_reg(0xEA, 0x00);                 /* Reset Power Control 1                */
    wr_reg(0xEB, 0x20);                 /* Power Control 2                      */
    wr_reg(0xEC, 0x0C);                 /* Power Control 3                      */
    wr_reg(0xED, 0xC4);                 /* Power Control 4                      */
    wr_reg(0xE8, 0x40);                 /* Source OPON_N                        */
    wr_reg(0xE9, 0x38);                 /* Source OPON_I                        */
    wr_reg(0xF1, 0x01);                 /*                                      */
    wr_reg(0xF2, 0x10);                 /*                                      */
    wr_reg(0x27, 0xA3);                 /* Display Control 2                    */

    /* Power On sequence ---------------------------------------------------------*/
    wr_reg(0x1B, 0x1B);                 /* Power Control 2                      */
    wr_reg(0x1A, 0x01);                 /* Power Control 1                      */
    wr_reg(0x24, 0x2F);                 /* Vcom Control 2                       */
    wr_reg(0x25, 0x57);                 /* Vcom Control 3                       */
    wr_reg(0x23, 0x8D);                 /* Vcom Control 1                       */

    /* Gamma settings  -----------------------------------------------------------*/
    wr_reg(0x40,0x00);   //   default setup
    wr_reg(0x41,0x00);   //
    wr_reg(0x42,0x01);   //
    wr_reg(0x43,0x13);   //
    wr_reg(0x44,0x10);   //
    wr_reg(0x45,0x26);   //
    wr_reg(0x46,0x08);   //
    wr_reg(0x47,0x51);   //
    wr_reg(0x48,0x02);   //
    wr_reg(0x49,0x12);   //
    wr_reg(0x4A,0x18);   //
    wr_reg(0x4B,0x19);   //
    wr_reg(0x4C,0x14);   //
    wr_reg(0x50,0x19);   //
    wr_reg(0x51,0x2F);   //
    wr_reg(0x52,0x2C);   //
    wr_reg(0x53,0x3E);   //
    wr_reg(0x54,0x3F);   //
    wr_reg(0x55,0x3F);   //
    wr_reg(0x56,0x2E);   //
    wr_reg(0x57,0x77);   //
    wr_reg(0x58,0x0B);   //
    wr_reg(0x59,0x06);   //
    wr_reg(0x5A,0x07);   //
    wr_reg(0x5B,0x0D);   //
    wr_reg(0x5C,0x1D);   //
    wr_reg(0x5D,0xCC);   //

    /* Power + Osc ---------------------------------------------------------------*/
    wr_reg(0x18, 0x36);                 /* OSC Control 1                        */
    wr_reg(0x19, 0x01);                 /* OSC Control 2                        */
    wr_reg(0x01, 0x00);                 /* Display Mode Control                 */
    wr_reg(0x1F, 0x88);                 /* Power Control 6                      */
    wait_ms(5);                           /* Delay 5 ms                           */
    wr_reg(0x1F, 0x80);                 /* Power Control 6                      */
    wait_ms(5);                         /* Delay 5 ms                           */
    wr_reg(0x1F, 0x90);                 /* Power Control 6                      */
    wait_ms(5);                           /* Delay 5 ms                           */
    wr_reg(0x1F, 0xD0);                 /* Power Control 6                      */
    wait_ms(5);                           /* Delay 5 ms                           */

    wr_reg(0x17, 0x05);                 /* Colmod 16Bit/Pixel                   */

    wr_reg(0x36, 0x00);                 /* Panel Characteristic                 */
    wr_reg(0x28, 0x38);                 /* Display Control 3                    */
    wait_ms(40);
    wr_reg(0x28, 0x3C);                 /* Display Control 3                    */
    switch (orientation) {
        case 0:
            wr_reg(0x16, 0x08);
            break;
        case 2:
            wr_reg(0x16, 0xC8);
            break;
        case 3:
            wr_reg(0x16, 0xA8);
            break;   
         case 1:
         default:
            wr_reg(0x16, 0x68);
            break;   
            
    }
#if defined USE_DMA                     // setup DMA channel 0
    LPC_SC->PCONP |= (1UL << 29);       // Power up the GPDMA.
    LPC_GPDMA->DMACConfig = 1;          // enable DMA controller
    LPC_GPDMA->DMACIntTCClear = 0x1;    // Reset the Interrupt status
    LPC_GPDMA->DMACIntErrClr = 0x1;
    LPC_GPDMACH0->DMACCLLI      = 0;
#endif
    WindowMax ();
}

// Set one pixel
void SPI_TFT::pixel(int x, int y, int color)
{
    wr_reg(0x03, (x >> 0));
    wr_reg(0x02, (x >> 8));
    wr_reg(0x07, (y >> 0));
    wr_reg(0x06, (y >> 8));
    wr_cmd(0x22);
    _cs = 0;
    #if defined NO_MBED_LIB
        if (spi_port == 0) {    // TFT on SSP0
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start Data
            LPC_SSP0->CR0 |= 0x08UL;    // set back to 16 bit
            LPC_SSP0->DR = color;       // Pixel
            // we have to wait for SPI IDLE to set CS back to high
            do {
            } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
        } else {       // TFT on SSP1
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set back to 16 bit
            LPC_SSP1->DR = color;
            // we have to wait for SPI IDLE to set CS back to high
            do {
            } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
        }
    #else    // use mbed lib
        
        #if defined TARGET_KL25Z                          // 8 Bit SPI
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.write(color >> 8);
            _spi.write(color & 0xff);
        #else
            _spi.format(8,3);                             // 8 bit Mode 3
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.format(16,3);                            // switch to 16 bit Mode 3
            _spi.write(color);                            // Write D0..D15
        #endif
    #endif
    _cs = 1;
}

// define draw area
void SPI_TFT::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
    wr_reg(0x03, x );
    wr_reg(0x02, (x >> 8));
    wr_reg(0x05, x+w-1 );
    wr_reg(0x04, (x+w-1 >> 8));
    wr_reg(0x07,  y );
    wr_reg(0x06, ( y >> 8));
    wr_reg(0x09, ( y+h-1 ));
    wr_reg(0x08, ( y+h-1 >> 8));
}

// set draw area to max
void SPI_TFT::WindowMax (void)
{
    window (0, 0, width(),  height());
}


// clear screen
void SPI_TFT::cls (void)
{
    fprintf(stderr, "CLS \n\r");
    int pixel = ( width() * height());
    #if defined USE_DMA
        int dma_count;
        int color = _background;
    #endif
    WindowMax();
    wr_cmd(0x22);

    #if defined NO_MBED_LIB
        #if defined USE_DMA
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
        #endif
        _cs = 0;
        if (spi_port == 0) {    // TFT on SSP0
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
                /* Enable SSP0 for DMA. */
                LPC_SSP0->DMACR = 0x2;
            #endif
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start byte
            LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        } else {    // TFT on SSP1
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
                /* Enable SSP1 for DMA. */
                LPC_SSP1->DMACR = 0x2;
            #endif
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        }

        #if defined USE_DMA
            // start DMA
            do {
                if (pixel > 4095) {
                    dma_count = 4095;
                    pixel = pixel - 4095;
                } else {
                    dma_count = pixel;
                    pixel = 0;
                }
                LPC_GPDMA->DMACIntTCClear = 0x1;
                LPC_GPDMA->DMACIntErrClr = 0x1;
                LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
                LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
                LPC_GPDMA->DMACSoftSReq = 0x1;   // DMA request
                do {
                    } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
            } while (pixel > 0);
            if (spi_port == 0) {    // TFT on SSP0
                do {
                } while ((0x0010 & LPC_SSP0->SR) == 0x10); // SPI FIFO not empty
                /* disable SSP0 for DMA. */
                LPC_SSP0->DMACR = 0x0;
            } else {  // TFT on SSP1
                do {
                    } while ((0x0010 & LPC_SSP1->SR) == 0x10); // SPI FIFO not empty
                /* disable SSP1 for DMA. */
                LPC_SSP1->DMACR = 0x0;
            }

        #else  // no DMA
            unsigned int i;
            for (i = 0; i < ( width() * height()); i++)
                _spi.write(_background);
        #endif

    #else  // use mbed lib
        _cs = 0;
        #if defined TARGET_KL25Z                          // 8 Bit SPI    
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            unsigned int i;
            for (i = 0; i < ( width() * height()); i++) {
                _spi.write(_background >> 8);
                _spi.write(_background & 0xff);
            }
        #else                                             // 16 bit SPI  
            _spi.format(8,3);                             // 8 bit Mode 3
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.format(16,3);                            // switch back to 16 bit Mode 3
            unsigned int i;
            for (i = 0; i < ( width() * height()); i++)
                _spi.write(_background);
        #endif
    #endif
    _cs = 1;
}

void SPI_TFT::circle(int x0, int y0, int r, int color)
{  
    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        pixel(x0-x, y0+y,color);
        pixel(x0+x, y0+y,color);
        pixel(x0+x, y0-y,color);
        pixel(x0-x, y0-y,color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
        
}
 
void SPI_TFT::fillcircle(int x0, int y0, int r, int color)
{
    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        vline(x0-x, y0-y, y0+y, color);
        vline(x0+x, y0-y, y0+y, color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
}


// draw horizontal line
void SPI_TFT::hline(int x0, int x1, int y, int color)
{
    int w;
    w = x1 - x0 + 1;
    window(x0,y,w,1);
    wr_cmd(0x22);
    _cs = 0;
    #if defined NO_MBED_LIB
        if (spi_port == 0) {    // TFT on SSP0
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
                /* Enable SSP0 for DMA. */
                LPC_SSP0->DMACR = 0x2;
            #endif
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start Data
            LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        } else {        // TFT on SSP1
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
                /* Enable SSP1 for DMA. */
                LPC_SSP1->DMACR = 0x2;
            #endif
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        }
        #if defined USE_DMA
            LPC_GPDMA->DMACIntTCClear = 0x1;
            LPC_GPDMA->DMACIntErrClr = 0x1;
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
            LPC_GPDMACH0->DMACCControl = w | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
            LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
            LPC_GPDMA->DMACSoftSReq = 0x1;   // start DMA
            do {
                } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
            if (spi_port == 0) {    // TFT on SSP0
                do {
                    } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
            } else {  // TFT on SSP1
                do {
                    } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
            }
        #else // no DMA
            int i;
            for (i=0; i<w; i++) {
                _spi.write(color);
            }
        #endif
    #else  // use mbed lib    
        #if defined TARGET_KL25Z                          // 8 Bit SPI    
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            for (int j=0; j<w; j++) {
                _spi.write(color >> 8);
                _spi.write(color & 0xff);
            }
        #else                                             // 16 Bit SPI  
            _spi.format(8,3);                             // 8 bit Mode 3
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.format(16,3);                            // switch back to 16 bit Mode 3
            for (int j=0; j<w; j++) {
                _spi.write(color);
            }
        #endif
    #endif
    _cs = 1;
    WindowMax();
    return;
}

// draw vertical line
void SPI_TFT::vline(int x, int y0, int y1, int color)
{
    int h;
    h = y1 - y0 + 1;
    window(x,y0,1,h);
    wr_cmd(0x22);
    _cs = 0;
    #if defined NO_MBED_LIB
        if (spi_port == 0) {    // TFT on SSP0
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
                /* Enable SSP0 for DMA. */
                LPC_SSP0->DMACR = 0x2;
            #endif
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start Data
            LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        } else { // TFT on SSP1
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
                /* Enable SSP1 for DMA. */
                LPC_SSP1->DMACR = 0x2;
            #endif
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        }
        #if defined USE_DMA
            LPC_GPDMA->DMACIntTCClear = 0x1;
            LPC_GPDMA->DMACIntErrClr = 0x1;
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
            LPC_GPDMACH0->DMACCControl = h | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
            LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
            LPC_GPDMA->DMACSoftSReq = 0x1;
            do {
                } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running

            if (spi_port == 0) {    // TFT on SSP0
                do {
                    } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
            } else { // TFT on SSP1
                 do {
                    } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
            }
        #else   // no DMA
            for (int y=0; y<h; y++) {
                _spi.write(color);
            }
        #endif
    #else     // use mbed lib
        #if defined TARGET_KL25Z                          // 8 Bit SPI
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            for (int y=0; y<h; y++) {
                _spi.write(color >> 8);
                _spi.write(color & 0xff);
            }
        #else                                             // 16 bit SPI  
            _spi.format(8,3);                             // 8 bit Mode 3
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.format(16,3);                            // switch to 16 bit Mode 3
            for (int y=0; y<h; y++) {
                _spi.write(color);
            }
        #endif
    #endif
    _cs = 1;
    WindowMax();
    return;
}


// draw line
void SPI_TFT::line(int x0, int y0, int x1, int y1, int color)
{
    //WindowMax();
    int   dx = 0, dy = 0;
    int   dx_sym = 0, dy_sym = 0;
    int   dx_x2 = 0, dy_x2 = 0;
    int   di = 0;

    dx = x1-x0;
    dy = y1-y0;

    if (dx == 0) {        /* vertical line */
        if (y1 > y0) vline(x0,y0,y1,color);
        else vline(x0,y1,y0,color);
        return;
    }

    if (dx > 0) {
        dx_sym = 1;
    } else {
        dx_sym = -1;
    }
    if (dy == 0) {        /* horizontal line */
        if (x1 > x0) hline(x0,x1,y0,color);
        else  hline(x1,x0,y0,color);
        return;
    }

    if (dy > 0) {
        dy_sym = 1;
    } else {
        dy_sym = -1;
    }

    dx = dx_sym*dx;
    dy = dy_sym*dy;

    dx_x2 = dx*2;
    dy_x2 = dy*2;

    if (dx >= dy) {
        di = dy_x2 - dx;
        while (x0 != x1) {

            pixel(x0, y0, color);
            x0 += dx_sym;
            if (di<0) {
                di += dy_x2;
            } else {
                di += dy_x2 - dx_x2;
                y0 += dy_sym;
            }
        }
        pixel(x0, y0, color);
    } else {
        di = dx_x2 - dy;
        while (y0 != y1) {
            pixel(x0, y0, color);
            y0 += dy_sym;
            if (di < 0) {
                di += dx_x2;
            } else {
                di += dx_x2 - dy_x2;
                x0 += dx_sym;
            }
        }
        pixel(x0, y0, color);
    }
    return;
}

// draw rect
void SPI_TFT::rect(int x0, int y0, int x1, int y1, int color)
{

    if (x1 > x0) hline(x0,x1,y0,color);
    else  hline(x1,x0,y0,color);

    if (y1 > y0) vline(x0,y0,y1,color);
    else vline(x0,y1,y0,color);

    if (x1 > x0) hline(x0,x1,y1,color);
    else  hline(x1,x0,y1,color);

    if (y1 > y0) vline(x1,y0,y1,color);
    else vline(x1,y1,y0,color);

    return;
}


// fill rect
void SPI_TFT::fillrect(int x0, int y0, int x1, int y1, int color)
{

    int h = y1 - y0 + 1;
    int w = x1 - x0 + 1;
    int pixel = h * w;
    #if defined USE_DMA
        int dma_count;
    #endif
    window(x0,y0,w,h);
    wr_cmd(0x22);
    _cs = 0;
    #if defined NO_MBED_LIB
        if (spi_port == 0) {    // TFT on SSP0
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
                /* Enable SSP0 for DMA. */
                LPC_SSP0->DMACR = 0x2;
            #endif
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start Data
            LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        } else {  // TFT on SSP1
            #if defined USE_DMA
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
                /* Enable SSP1 for DMA. */
                LPC_SSP1->DMACR = 0x2;
            #endif
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        }
        #if defined USE_DMA
            do {
                if (pixel > 4095) {
                    dma_count = 4095;
                    pixel = pixel - 4095;
                } else {
                    dma_count = pixel;
                    pixel = 0;
                }
                LPC_GPDMA->DMACIntTCClear = 0x1;
                LPC_GPDMA->DMACIntErrClr = 0x1;
                LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
                LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
                LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
                LPC_GPDMA->DMACSoftSReq = 0x1;
                do {
                    } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running

                } while (pixel > 0);

            if (spi_port == 0) {    // TFT on SSP0
                do {
                    } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
            } else {   // TFT on SSP1
                do {
                    } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
            }

        #else  // no DMA 
            for (int p=0; p<pixel; p++) {
            _spi.write(color);
            }
        #endif

    #else // use mbed lib
        #if defined TARGET_KL25Z                          // 8 Bit SPI
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            for (int p=0; p<pixel; p++) {
                _spi.write(color >> 8);
                _spi.write(color & 0xff);
            }

        #else                                             // 16 bit SPI
            _spi.format(8,3);                             // 8 bit Mode 3
            _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
            _spi.format(16,3);                            // switch to 16 bit Mode 3
            for (int p=0; p<pixel; p++) {
                _spi.write(color);
            }
        #endif
    #endif
    _cs = 1;
    WindowMax();
    return;
}

// set cursor position
void SPI_TFT::locate(int x, int y)
{
    char_x = x;
    char_y = y;
}


// calculate num of chars in a row
int SPI_TFT::columns()
{
    return width() / font[1];
}

// calculate num of rows on the screen
int SPI_TFT::rows()
{
    return height() / font[2];
}

// print a char on the screen
int SPI_TFT::_putc(int value)
{
    if (value == '\n') {    // new line
        char_x = 0;
        char_y = char_y + font[2];
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    } else {
        character(char_x, char_y, value);
    }
    return value;
}

// consrtuct the char out of the font
void SPI_TFT::character(int x, int y, int c)
{
    unsigned int hor,vert,offset,bpl,j,i,b;
    unsigned char* zeichen;
    unsigned char z,w;
    #if defined USE_DMA
        unsigned int pixel;
        unsigned int p;
        unsigned int dma_count,dma_off;
        uint16_t *buffer;
    #endif

    if ((c < 31) || (c > 127)) return;   // test char range

    // read font parameter from start of array
    offset = font[0];                    // bytes / char
    hor = font[1];                       // get hor size of font
    vert = font[2];                      // get vert size of font
    bpl = font[3];                       // bytes per line

    if (char_x + hor > width()) {
        char_x = 0;
        char_y = char_y + vert;
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    }
    window(char_x, char_y,hor,vert); // char box
    wr_cmd(0x22);

    #if defined USE_DMA
        pixel = hor * vert;  // calculate buffer size

        buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the 16 bit
        if (buffer == NULL) {
            //led = 1;
            //pc.printf("Malloc error !\n\r");
            return;         // error no memory
        }

        zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
        w = zeichen[0];                          // width of actual char
        p = 0;
        // construct the char into the buffer
        for (j=0; j<vert; j++) {  //  vert line
            for (i=0; i<hor; i++) {   //  horz line
                z =  zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
                b = 1 << (j & 0x07);
                if (( z & b ) == 0x00) {
                    buffer[p] = _background;
                } else {
                    buffer[p] = _foreground;
                }
                p++;
            }
        }

        // copy the buffer with DMA SPI to display
        dma_off = 0;  // offset for DMA transfer
        _cs = 0;
        if (spi_port == 0) {    // TFT on SSP0
            LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
            /* Enable SSP0 for DMA. */
            LPC_SSP0->DMACR = 0x2;
            LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP0->DR = 0x72;        // start Data
            LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        } else { // TFT on SSP1
            LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
            /* Enable SSP1 for DMA. */
            LPC_SSP1->DMACR = 0x2;
            LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
            LPC_SSP1->DR = 0x72;        // start Data
            LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        }

        // start DMA
        do {
            if (pixel > 4095) {         // this is a giant font !
                dma_count = 4095;
                pixel = pixel - 4095;
            } else {
                dma_count = pixel;
                pixel = 0;
            }
            LPC_GPDMA->DMACIntTCClear = 0x1;
            LPC_GPDMA->DMACIntErrClr = 0x1;
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + dma_off);
            LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) |  DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
            LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
            LPC_GPDMA->DMACSoftSReq = 0x1;
            do {
                } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
            dma_off = dma_off + dma_count;
        } while (pixel > 0);

        free ((uint16_t *) buffer);

        if (spi_port == 0) {    // TFT on SSP0
            do {
                } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
            /* disable SSP0 for DMA. */
            LPC_SSP0->DMACR = 0x0;
        } else {  // TFT on SSP1
            do {
                } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
            /* disable SSP1 for DMA. */
            LPC_SSP1->DMACR = 0x0;
        }

    #else  // no dma
        _cs = 0;
        #if defined NO_MBED_LIB
            if (spi_port == 0) {    // TFT on SSP0
                LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
                LPC_SSP0->DR = 0x72;        // start Data
                LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
            } else { // TFT on SSP1
                LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
                LPC_SSP1->DR = 0x72;        // start Data
                LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
            }
        #else // mbed lib
            #if defined TARGET_KL25Z                          // 8 Bit SPI
                _spi.write(SPI_START | SPI_WR | SPI_DATA);   // Write : RS = 1, RW = 0
            #else                                             // 16 bit SPI  
                _spi.format(8,3);                             // 8 bit Mode 3
                _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
                _spi.format(16,3);                            // switch back to 16 bit Mode 3
            #endif
        #endif
    
        zeichen = &font[((c -32) * offset) + 4];    // start of char bitmap
        w = zeichen[0];                             // width of actual char
        for (j=0; j<vert; j++) {  //  vert line
            for (i=0; i<hor; i++) {   //  horz line
                z =  zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
                b = 1 << (j & 0x07);
                if (( z & b ) == 0x00) {
                    #if defined TARGET_KL25Z  // 8 Bit SPI
                        _spi.write(_background >> 8);
                        _spi.write(_background & 0xff);
                    #else
                        _spi.write(_background);
                    #endif
                } else {
                    #if defined TARGET_KL25Z  // 8 Bit SPI
                        _spi.write(_foreground >> 8);
                        _spi.write(_foreground & 0xff);
                    #else
                        _spi.write(_foreground);
                    #endif
                }
            }
        }
    #endif  // no DMA    
    _cs = 1;
    WindowMax();
    if ((w + 2) < hor) {                   // x offset to next char
        char_x += w + 2;
    } else char_x += hor;
}


void SPI_TFT::set_font(unsigned char* f)
{
    font = f;
}


void SPI_TFT::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
    unsigned int  j;
    int padd;
  
    unsigned short *bitmap_ptr = (unsigned short *)bitmap;
    #if defined TARGET_KL25Z  // 8 Bit SPI
        unsigned short pix_temp;
    #endif
  
    // the lines are padded to multiple of 4 bytes in a bitmap
    padd = -1;
    do {
        padd ++;
    } while (2*(w + padd)%4 != 0);
    window(x, y, w, h);
    wr_cmd(0x22);
    _cs = 0;
#if defined NO_MBED_LIB
    if (spi_port == 0) {    // TFT on SSP0
    #if defined USE_DMA
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
        /* Enable SSP0 for DMA. */
        LPC_SSP0->DMACR = 0x2;
    #endif
    LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
    LPC_SSP0->DR = 0x72;        // start Data
    LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit

    } else {
    #if defined USE_DMA
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
        /* Enable SSP1 for DMA. */
        LPC_SSP1->DMACR = 0x2;
    #endif
    LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
    LPC_SSP1->DR = 0x72;        // start Data command
    LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
    }

    bitmap_ptr += ((h - 1)* (w + padd));
    #if defined USE_DMA
        for (j = 0; j < h; j++) {        //Lines
            LPC_GPDMA->DMACIntTCClear = 0x1;
            LPC_GPDMA->DMACIntErrClr = 0x1;
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)bitmap_ptr;
            LPC_GPDMACH0->DMACCControl = w | (1UL << 18) | (1UL << 21) | (1UL << 31) |  DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
            LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
            LPC_GPDMA->DMACSoftSReq = 0x1;
            do {
            } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running

            bitmap_ptr -= w;
            bitmap_ptr -= padd;
        }
    #else
        unsigned int i;
        for (j = 0; j < h; j++) {        //Lines
            for (i = 0; i < w; i++) {     // copy pixel data to TFT
                _spi.write(*bitmap_ptr);    // one line
                bitmap_ptr++;
            }
            bitmap_ptr -= 2*w;
            bitmap_ptr -= padd;
        }
    #endif
    if (spi_port == 0) {    // TFT on SSP0
        do {
        } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
    } else {
        do {
        } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
    }
#else // use mbed lib
    #if defined TARGET_KL25Z  // 8 Bit SPI
        _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
    #else
        _spi.format(8,3);                             // 8 bit Mode 3
        _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
        _spi.format(16,3);                            // switch to 16 bit Mode 3
    #endif    
    bitmap_ptr += ((h - 1)* (w + padd));              
    unsigned int i;
    for (j = 0; j < h; j++) {        //Lines
        for (i = 0; i < w; i++) {     // copy pixel data to TFT
            #if defined TARGET_KL25Z  // 8 Bit SPI
                pix_temp = *bitmap_ptr;
                _spi.write(pix_temp >> 8);
                _spi.write(pix_temp);
                bitmap_ptr++;
            #else
                _spi.write(*bitmap_ptr);    // one line
                bitmap_ptr++;
            #endif
        }
        bitmap_ptr -= 2*w;
        bitmap_ptr -= padd;
     }
#endif // USE MBED LIB
    _cs = 1;
    WindowMax();
}


// local filesystem is not implemented in kinetis board
#if defined TARGET_LPC1768  || defined TARGET_LPC11U24


int SPI_TFT::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{

#define OffsetPixelWidth    18
#define OffsetPixelHeigh    22
#define OffsetFileSize      34
#define OffsetPixData       10
#define OffsetBPP           28

    char filename[50];
    unsigned char BMP_Header[54];
    unsigned short BPP_t;
    unsigned int PixelWidth,PixelHeigh,start_data;
    unsigned int    i,off;
    int padd,j;
    unsigned short *line;

    // get the filename
    LocalFileSystem local("local");
    sprintf(&filename[0],"/local/");
    i=7;
    while (*Name_BMP!='\0') {
        filename[i++]=*Name_BMP++;
    }

    fprintf(stderr, "filename : %s \n\r",filename);

    FILE *Image = fopen((const char *)&filename[0], "rb");  // open the bmp file
    if (!Image) {
        return(0);      // error file not found !
    }

    fread(&BMP_Header[0],1,54,Image);      // get the BMP Header

    if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) {  // check magic byte
        fclose(Image);
        return(-1);     // error no BMP file
    }

    BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
    if (BPP_t != 0x0010) {
        fclose(Image);
        return(-2);     // error no 16 bit BMP
    }

    PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
    PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
    if (PixelHeigh > height() + y || PixelWidth > width() + x) {
        fclose(Image);
        return(-3);      // to big
    }

    start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);

    line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
    if (line == NULL) {
        return(-4);         // error no memory
    }

    // the bmp lines are padded to multiple of 4 bytes
    padd = -1;
    do {
        padd ++;
    } while ((PixelWidth * 2 + padd)%4 != 0);


//fseek(Image, 70 ,SEEK_SET);
    window(x, y,PixelWidth ,PixelHeigh);
    wr_cmd(0x22);
    _cs = 0;
#if defined NO_MBED_LIB
    if (spi_port == 0) {    // TFT on SSP0
#if defined USE_DMA
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
        /* Enable SSP0 for DMA. */
        LPC_SSP0->DMACR = 0x2;
#endif
        LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
        LPC_SSP0->DR = 0x72;        // start Data
        LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit

    } else {
#if defined USE_DMA
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
        /* Enable SSP1 for DMA. */
        LPC_SSP1->DMACR = 0x2;
#endif
        LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
        LPC_SSP1->DR = 0x72;        // start Data
        LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
    }
    for (j = PixelHeigh - 1; j >= 0; j--) {               //Lines bottom up
        off = j * (PixelWidth  * 2 + padd) + start_data;   // start of line
        fseek(Image, off ,SEEK_SET);
        fread(line,1,PixelWidth * 2,Image);       // read a line - slow !
#if defined USE_DMA
        LPC_GPDMA->DMACIntTCClear = 0x1;
        LPC_GPDMA->DMACIntErrClr = 0x1;
        LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)line;
        LPC_GPDMACH0->DMACCControl = PixelWidth | (1UL << 18) | (1UL << 21) | (1UL << 31) |  DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
        LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
        LPC_GPDMA->DMACSoftSReq = 0x1;
        do {
        } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
#else
        for (i = 0; i < PixelWidth; i++) {        // copy pixel data to TFT
            _spi.write(line[i]);                  // one 16 bit pixel
        }
#endif
    }
    if (spi_port == 0) {    // TFT on SSP0
        do {
        } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
    } else {
        do {
        } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
    }

#else // use mbed lib
    _spi.format(8,3);                             // 8 bit Mode 3
    _spi.write(SPI_START | SPI_WR | SPI_DATA);    // Write : RS = 1, RW = 0
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    for (j = PixelHeigh - 1; j >= 0; j--) {               //Lines bottom up
        off = j * (PixelWidth  * 2 + padd) + start_data;   // start of line
        fseek(Image, off ,SEEK_SET);
        fread(line,1,PixelWidth * 2,Image);       // read a line - slow !
        for (i = 0; i < PixelWidth; i++) {        // copy pixel data to TFT
            _spi.write(line[i]);                  // one 16 bit pixel
        }
    }
#endif
    _cs = 1;
    free (line);
    fclose(Image);
    WindowMax();
    return(1);
}

#endif