mbed-os for GR-LYCHEE
Dependents: mbed-os-example-blinky-gr-lychee GR-Boads_Camera_sample GR-Boards_Audio_Recoder GR-Boads_Camera_DisplayApp ... more
features/FEATURE_LWIP/lwip-interface/lwip/doc/rawapi.txt@0:f782d9c66c49, 2018-02-02 (annotated)
- Committer:
- dkato
- Date:
- Fri Feb 02 05:42:23 2018 +0000
- Revision:
- 0:f782d9c66c49
mbed-os for GR-LYCHEE
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
dkato | 0:f782d9c66c49 | 1 | Raw TCP/IP interface for lwIP |
dkato | 0:f782d9c66c49 | 2 | |
dkato | 0:f782d9c66c49 | 3 | Authors: Adam Dunkels, Leon Woestenberg, Christiaan Simons |
dkato | 0:f782d9c66c49 | 4 | |
dkato | 0:f782d9c66c49 | 5 | lwIP provides three Application Program's Interfaces (APIs) for programs |
dkato | 0:f782d9c66c49 | 6 | to use for communication with the TCP/IP code: |
dkato | 0:f782d9c66c49 | 7 | * low-level "core" / "callback" or "raw" API. |
dkato | 0:f782d9c66c49 | 8 | * higher-level "sequential" API. |
dkato | 0:f782d9c66c49 | 9 | * BSD-style socket API. |
dkato | 0:f782d9c66c49 | 10 | |
dkato | 0:f782d9c66c49 | 11 | The raw API (sometimes called native API) is an event-driven API designed |
dkato | 0:f782d9c66c49 | 12 | to be used without an operating system that implements zero-copy send and |
dkato | 0:f782d9c66c49 | 13 | receive. This API is also used by the core stack for interaction between |
dkato | 0:f782d9c66c49 | 14 | the various protocols. It is the only API available when running lwIP |
dkato | 0:f782d9c66c49 | 15 | without an operating system. |
dkato | 0:f782d9c66c49 | 16 | |
dkato | 0:f782d9c66c49 | 17 | The sequential API provides a way for ordinary, sequential, programs |
dkato | 0:f782d9c66c49 | 18 | to use the lwIP stack. It is quite similar to the BSD socket API. The |
dkato | 0:f782d9c66c49 | 19 | model of execution is based on the blocking open-read-write-close |
dkato | 0:f782d9c66c49 | 20 | paradigm. Since the TCP/IP stack is event based by nature, the TCP/IP |
dkato | 0:f782d9c66c49 | 21 | code and the application program must reside in different execution |
dkato | 0:f782d9c66c49 | 22 | contexts (threads). |
dkato | 0:f782d9c66c49 | 23 | |
dkato | 0:f782d9c66c49 | 24 | The socket API is a compatibility API for existing applications, |
dkato | 0:f782d9c66c49 | 25 | currently it is built on top of the sequential API. It is meant to |
dkato | 0:f782d9c66c49 | 26 | provide all functions needed to run socket API applications running |
dkato | 0:f782d9c66c49 | 27 | on other platforms (e.g. unix / windows etc.). However, due to limitations |
dkato | 0:f782d9c66c49 | 28 | in the specification of this API, there might be incompatibilities |
dkato | 0:f782d9c66c49 | 29 | that require small modifications of existing programs. |
dkato | 0:f782d9c66c49 | 30 | |
dkato | 0:f782d9c66c49 | 31 | ** Multithreading |
dkato | 0:f782d9c66c49 | 32 | |
dkato | 0:f782d9c66c49 | 33 | lwIP started targeting single-threaded environments. When adding multi- |
dkato | 0:f782d9c66c49 | 34 | threading support, instead of making the core thread-safe, another |
dkato | 0:f782d9c66c49 | 35 | approach was chosen: there is one main thread running the lwIP core |
dkato | 0:f782d9c66c49 | 36 | (also known as the "tcpip_thread"). When running in a multithreaded |
dkato | 0:f782d9c66c49 | 37 | environment, raw API functions MUST only be called from the core thread |
dkato | 0:f782d9c66c49 | 38 | since raw API functions are not protected from concurrent access (aside |
dkato | 0:f782d9c66c49 | 39 | from pbuf- and memory management functions). Application threads using |
dkato | 0:f782d9c66c49 | 40 | the sequential- or socket API communicate with this main thread through |
dkato | 0:f782d9c66c49 | 41 | message passing. |
dkato | 0:f782d9c66c49 | 42 | |
dkato | 0:f782d9c66c49 | 43 | As such, the list of functions that may be called from |
dkato | 0:f782d9c66c49 | 44 | other threads or an ISR is very limited! Only functions |
dkato | 0:f782d9c66c49 | 45 | from these API header files are thread-safe: |
dkato | 0:f782d9c66c49 | 46 | - api.h |
dkato | 0:f782d9c66c49 | 47 | - netbuf.h |
dkato | 0:f782d9c66c49 | 48 | - netdb.h |
dkato | 0:f782d9c66c49 | 49 | - netifapi.h |
dkato | 0:f782d9c66c49 | 50 | - pppapi.h |
dkato | 0:f782d9c66c49 | 51 | - sockets.h |
dkato | 0:f782d9c66c49 | 52 | - sys.h |
dkato | 0:f782d9c66c49 | 53 | |
dkato | 0:f782d9c66c49 | 54 | Additionaly, memory (de-)allocation functions may be |
dkato | 0:f782d9c66c49 | 55 | called from multiple threads (not ISR!) with NO_SYS=0 |
dkato | 0:f782d9c66c49 | 56 | since they are protected by SYS_LIGHTWEIGHT_PROT and/or |
dkato | 0:f782d9c66c49 | 57 | semaphores. |
dkato | 0:f782d9c66c49 | 58 | |
dkato | 0:f782d9c66c49 | 59 | Netconn or Socket API functions are thread safe against the |
dkato | 0:f782d9c66c49 | 60 | core thread but they are not reentrant at the control block |
dkato | 0:f782d9c66c49 | 61 | granularity level. That is, a UDP or TCP control block must |
dkato | 0:f782d9c66c49 | 62 | not be shared among multiple threads without proper locking. |
dkato | 0:f782d9c66c49 | 63 | |
dkato | 0:f782d9c66c49 | 64 | If SYS_LIGHTWEIGHT_PROT is set to 1 and |
dkato | 0:f782d9c66c49 | 65 | LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT is set to 1, |
dkato | 0:f782d9c66c49 | 66 | pbuf_free() may also be called from another thread or |
dkato | 0:f782d9c66c49 | 67 | an ISR (since only then, mem_free - for PBUF_RAM - may |
dkato | 0:f782d9c66c49 | 68 | be called from an ISR: otherwise, the HEAP is only |
dkato | 0:f782d9c66c49 | 69 | protected by semaphores). |
dkato | 0:f782d9c66c49 | 70 | |
dkato | 0:f782d9c66c49 | 71 | |
dkato | 0:f782d9c66c49 | 72 | ** The remainder of this document discusses the "raw" API. ** |
dkato | 0:f782d9c66c49 | 73 | |
dkato | 0:f782d9c66c49 | 74 | The raw TCP/IP interface allows the application program to integrate |
dkato | 0:f782d9c66c49 | 75 | better with the TCP/IP code. Program execution is event based by |
dkato | 0:f782d9c66c49 | 76 | having callback functions being called from within the TCP/IP |
dkato | 0:f782d9c66c49 | 77 | code. The TCP/IP code and the application program both run in the same |
dkato | 0:f782d9c66c49 | 78 | thread. The sequential API has a much higher overhead and is not very |
dkato | 0:f782d9c66c49 | 79 | well suited for small systems since it forces a multithreaded paradigm |
dkato | 0:f782d9c66c49 | 80 | on the application. |
dkato | 0:f782d9c66c49 | 81 | |
dkato | 0:f782d9c66c49 | 82 | The raw TCP/IP interface is not only faster in terms of code execution |
dkato | 0:f782d9c66c49 | 83 | time but is also less memory intensive. The drawback is that program |
dkato | 0:f782d9c66c49 | 84 | development is somewhat harder and application programs written for |
dkato | 0:f782d9c66c49 | 85 | the raw TCP/IP interface are more difficult to understand. Still, this |
dkato | 0:f782d9c66c49 | 86 | is the preferred way of writing applications that should be small in |
dkato | 0:f782d9c66c49 | 87 | code size and memory usage. |
dkato | 0:f782d9c66c49 | 88 | |
dkato | 0:f782d9c66c49 | 89 | All APIs can be used simultaneously by different application |
dkato | 0:f782d9c66c49 | 90 | programs. In fact, the sequential API is implemented as an application |
dkato | 0:f782d9c66c49 | 91 | program using the raw TCP/IP interface. |
dkato | 0:f782d9c66c49 | 92 | |
dkato | 0:f782d9c66c49 | 93 | Do not confuse the lwIP raw API with raw Ethernet or IP sockets. |
dkato | 0:f782d9c66c49 | 94 | The former is a way of interfacing the lwIP network stack (including |
dkato | 0:f782d9c66c49 | 95 | TCP and UDP), the later refers to processing raw Ethernet or IP data |
dkato | 0:f782d9c66c49 | 96 | instead of TCP connections or UDP packets. |
dkato | 0:f782d9c66c49 | 97 | |
dkato | 0:f782d9c66c49 | 98 | Raw API applications may never block since all packet processing |
dkato | 0:f782d9c66c49 | 99 | (input and output) as well as timer processing (TCP mainly) is done |
dkato | 0:f782d9c66c49 | 100 | in a single execution context. |
dkato | 0:f782d9c66c49 | 101 | |
dkato | 0:f782d9c66c49 | 102 | --- Callbacks |
dkato | 0:f782d9c66c49 | 103 | |
dkato | 0:f782d9c66c49 | 104 | Program execution is driven by callbacks functions, which are then |
dkato | 0:f782d9c66c49 | 105 | invoked by the lwIP core when activity related to that application |
dkato | 0:f782d9c66c49 | 106 | occurs. A particular application may register to be notified via a |
dkato | 0:f782d9c66c49 | 107 | callback function for events such as incoming data available, outgoing |
dkato | 0:f782d9c66c49 | 108 | data sent, error notifications, poll timer expiration, connection |
dkato | 0:f782d9c66c49 | 109 | closed, etc. An application can provide a callback function to perform |
dkato | 0:f782d9c66c49 | 110 | processing for any or all of these events. Each callback is an ordinary |
dkato | 0:f782d9c66c49 | 111 | C function that is called from within the TCP/IP code. Every callback |
dkato | 0:f782d9c66c49 | 112 | function is passed the current TCP or UDP connection state as an |
dkato | 0:f782d9c66c49 | 113 | argument. Also, in order to be able to keep program specific state, |
dkato | 0:f782d9c66c49 | 114 | the callback functions are called with a program specified argument |
dkato | 0:f782d9c66c49 | 115 | that is independent of the TCP/IP state. |
dkato | 0:f782d9c66c49 | 116 | |
dkato | 0:f782d9c66c49 | 117 | The function for setting the application connection state is: |
dkato | 0:f782d9c66c49 | 118 | |
dkato | 0:f782d9c66c49 | 119 | - void tcp_arg(struct tcp_pcb *pcb, void *arg) |
dkato | 0:f782d9c66c49 | 120 | |
dkato | 0:f782d9c66c49 | 121 | Specifies the program specific state that should be passed to all |
dkato | 0:f782d9c66c49 | 122 | other callback functions. The "pcb" argument is the current TCP |
dkato | 0:f782d9c66c49 | 123 | connection control block, and the "arg" argument is the argument |
dkato | 0:f782d9c66c49 | 124 | that will be passed to the callbacks. |
dkato | 0:f782d9c66c49 | 125 | |
dkato | 0:f782d9c66c49 | 126 | |
dkato | 0:f782d9c66c49 | 127 | --- TCP connection setup |
dkato | 0:f782d9c66c49 | 128 | |
dkato | 0:f782d9c66c49 | 129 | The functions used for setting up connections is similar to that of |
dkato | 0:f782d9c66c49 | 130 | the sequential API and of the BSD socket API. A new TCP connection |
dkato | 0:f782d9c66c49 | 131 | identifier (i.e., a protocol control block - PCB) is created with the |
dkato | 0:f782d9c66c49 | 132 | tcp_new() function. This PCB can then be either set to listen for new |
dkato | 0:f782d9c66c49 | 133 | incoming connections or be explicitly connected to another host. |
dkato | 0:f782d9c66c49 | 134 | |
dkato | 0:f782d9c66c49 | 135 | - struct tcp_pcb *tcp_new(void) |
dkato | 0:f782d9c66c49 | 136 | |
dkato | 0:f782d9c66c49 | 137 | Creates a new connection identifier (PCB). If memory is not |
dkato | 0:f782d9c66c49 | 138 | available for creating the new pcb, NULL is returned. |
dkato | 0:f782d9c66c49 | 139 | |
dkato | 0:f782d9c66c49 | 140 | - err_t tcp_bind(struct tcp_pcb *pcb, ip_addr_t *ipaddr, |
dkato | 0:f782d9c66c49 | 141 | u16_t port) |
dkato | 0:f782d9c66c49 | 142 | |
dkato | 0:f782d9c66c49 | 143 | Binds the pcb to a local IP address and port number. The IP address |
dkato | 0:f782d9c66c49 | 144 | can be specified as IP_ADDR_ANY in order to bind the connection to |
dkato | 0:f782d9c66c49 | 145 | all local IP addresses. |
dkato | 0:f782d9c66c49 | 146 | |
dkato | 0:f782d9c66c49 | 147 | If another connection is bound to the same port, the function will |
dkato | 0:f782d9c66c49 | 148 | return ERR_USE, otherwise ERR_OK is returned. |
dkato | 0:f782d9c66c49 | 149 | |
dkato | 0:f782d9c66c49 | 150 | - struct tcp_pcb *tcp_listen(struct tcp_pcb *pcb) |
dkato | 0:f782d9c66c49 | 151 | |
dkato | 0:f782d9c66c49 | 152 | Commands a pcb to start listening for incoming connections. When an |
dkato | 0:f782d9c66c49 | 153 | incoming connection is accepted, the function specified with the |
dkato | 0:f782d9c66c49 | 154 | tcp_accept() function will be called. The pcb will have to be bound |
dkato | 0:f782d9c66c49 | 155 | to a local port with the tcp_bind() function. |
dkato | 0:f782d9c66c49 | 156 | |
dkato | 0:f782d9c66c49 | 157 | The tcp_listen() function returns a new connection identifier, and |
dkato | 0:f782d9c66c49 | 158 | the one passed as an argument to the function will be |
dkato | 0:f782d9c66c49 | 159 | deallocated. The reason for this behavior is that less memory is |
dkato | 0:f782d9c66c49 | 160 | needed for a connection that is listening, so tcp_listen() will |
dkato | 0:f782d9c66c49 | 161 | reclaim the memory needed for the original connection and allocate a |
dkato | 0:f782d9c66c49 | 162 | new smaller memory block for the listening connection. |
dkato | 0:f782d9c66c49 | 163 | |
dkato | 0:f782d9c66c49 | 164 | tcp_listen() may return NULL if no memory was available for the |
dkato | 0:f782d9c66c49 | 165 | listening connection. If so, the memory associated with the pcb |
dkato | 0:f782d9c66c49 | 166 | passed as an argument to tcp_listen() will not be deallocated. |
dkato | 0:f782d9c66c49 | 167 | |
dkato | 0:f782d9c66c49 | 168 | - struct tcp_pcb *tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog) |
dkato | 0:f782d9c66c49 | 169 | |
dkato | 0:f782d9c66c49 | 170 | Same as tcp_listen, but limits the number of outstanding connections |
dkato | 0:f782d9c66c49 | 171 | in the listen queue to the value specified by the backlog argument. |
dkato | 0:f782d9c66c49 | 172 | To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h. |
dkato | 0:f782d9c66c49 | 173 | |
dkato | 0:f782d9c66c49 | 174 | - void tcp_accept(struct tcp_pcb *pcb, |
dkato | 0:f782d9c66c49 | 175 | err_t (* accept)(void *arg, struct tcp_pcb *newpcb, |
dkato | 0:f782d9c66c49 | 176 | err_t err)) |
dkato | 0:f782d9c66c49 | 177 | |
dkato | 0:f782d9c66c49 | 178 | Specified the callback function that should be called when a new |
dkato | 0:f782d9c66c49 | 179 | connection arrives on a listening connection. |
dkato | 0:f782d9c66c49 | 180 | |
dkato | 0:f782d9c66c49 | 181 | - err_t tcp_connect(struct tcp_pcb *pcb, ip_addr_t *ipaddr, |
dkato | 0:f782d9c66c49 | 182 | u16_t port, err_t (* connected)(void *arg, |
dkato | 0:f782d9c66c49 | 183 | struct tcp_pcb *tpcb, |
dkato | 0:f782d9c66c49 | 184 | err_t err)); |
dkato | 0:f782d9c66c49 | 185 | |
dkato | 0:f782d9c66c49 | 186 | Sets up the pcb to connect to the remote host and sends the |
dkato | 0:f782d9c66c49 | 187 | initial SYN segment which opens the connection. |
dkato | 0:f782d9c66c49 | 188 | |
dkato | 0:f782d9c66c49 | 189 | The tcp_connect() function returns immediately; it does not wait for |
dkato | 0:f782d9c66c49 | 190 | the connection to be properly setup. Instead, it will call the |
dkato | 0:f782d9c66c49 | 191 | function specified as the fourth argument (the "connected" argument) |
dkato | 0:f782d9c66c49 | 192 | when the connection is established. If the connection could not be |
dkato | 0:f782d9c66c49 | 193 | properly established, either because the other host refused the |
dkato | 0:f782d9c66c49 | 194 | connection or because the other host didn't answer, the "err" |
dkato | 0:f782d9c66c49 | 195 | callback function of this pcb (registered with tcp_err, see below) |
dkato | 0:f782d9c66c49 | 196 | will be called. |
dkato | 0:f782d9c66c49 | 197 | |
dkato | 0:f782d9c66c49 | 198 | The tcp_connect() function can return ERR_MEM if no memory is |
dkato | 0:f782d9c66c49 | 199 | available for enqueueing the SYN segment. If the SYN indeed was |
dkato | 0:f782d9c66c49 | 200 | enqueued successfully, the tcp_connect() function returns ERR_OK. |
dkato | 0:f782d9c66c49 | 201 | |
dkato | 0:f782d9c66c49 | 202 | |
dkato | 0:f782d9c66c49 | 203 | --- Sending TCP data |
dkato | 0:f782d9c66c49 | 204 | |
dkato | 0:f782d9c66c49 | 205 | TCP data is sent by enqueueing the data with a call to |
dkato | 0:f782d9c66c49 | 206 | tcp_write(). When the data is successfully transmitted to the remote |
dkato | 0:f782d9c66c49 | 207 | host, the application will be notified with a call to a specified |
dkato | 0:f782d9c66c49 | 208 | callback function. |
dkato | 0:f782d9c66c49 | 209 | |
dkato | 0:f782d9c66c49 | 210 | - err_t tcp_write(struct tcp_pcb *pcb, const void *dataptr, u16_t len, |
dkato | 0:f782d9c66c49 | 211 | u8_t apiflags) |
dkato | 0:f782d9c66c49 | 212 | |
dkato | 0:f782d9c66c49 | 213 | Enqueues the data pointed to by the argument dataptr. The length of |
dkato | 0:f782d9c66c49 | 214 | the data is passed as the len parameter. The apiflags can be one or more of: |
dkato | 0:f782d9c66c49 | 215 | - TCP_WRITE_FLAG_COPY: indicates whether the new memory should be allocated |
dkato | 0:f782d9c66c49 | 216 | for the data to be copied into. If this flag is not given, no new memory |
dkato | 0:f782d9c66c49 | 217 | should be allocated and the data should only be referenced by pointer. This |
dkato | 0:f782d9c66c49 | 218 | also means that the memory behind dataptr must not change until the data is |
dkato | 0:f782d9c66c49 | 219 | ACKed by the remote host |
dkato | 0:f782d9c66c49 | 220 | - TCP_WRITE_FLAG_MORE: indicates that more data follows. If this is omitted, |
dkato | 0:f782d9c66c49 | 221 | the PSH flag is set in the last segment created by this call to tcp_write. |
dkato | 0:f782d9c66c49 | 222 | If this flag is given, the PSH flag is not set. |
dkato | 0:f782d9c66c49 | 223 | |
dkato | 0:f782d9c66c49 | 224 | The tcp_write() function will fail and return ERR_MEM if the length |
dkato | 0:f782d9c66c49 | 225 | of the data exceeds the current send buffer size or if the length of |
dkato | 0:f782d9c66c49 | 226 | the queue of outgoing segment is larger than the upper limit defined |
dkato | 0:f782d9c66c49 | 227 | in lwipopts.h. The number of bytes available in the output queue can |
dkato | 0:f782d9c66c49 | 228 | be retrieved with the tcp_sndbuf() function. |
dkato | 0:f782d9c66c49 | 229 | |
dkato | 0:f782d9c66c49 | 230 | The proper way to use this function is to call the function with at |
dkato | 0:f782d9c66c49 | 231 | most tcp_sndbuf() bytes of data. If the function returns ERR_MEM, |
dkato | 0:f782d9c66c49 | 232 | the application should wait until some of the currently enqueued |
dkato | 0:f782d9c66c49 | 233 | data has been successfully received by the other host and try again. |
dkato | 0:f782d9c66c49 | 234 | |
dkato | 0:f782d9c66c49 | 235 | - void tcp_sent(struct tcp_pcb *pcb, |
dkato | 0:f782d9c66c49 | 236 | err_t (* sent)(void *arg, struct tcp_pcb *tpcb, |
dkato | 0:f782d9c66c49 | 237 | u16_t len)) |
dkato | 0:f782d9c66c49 | 238 | |
dkato | 0:f782d9c66c49 | 239 | Specifies the callback function that should be called when data has |
dkato | 0:f782d9c66c49 | 240 | successfully been received (i.e., acknowledged) by the remote |
dkato | 0:f782d9c66c49 | 241 | host. The len argument passed to the callback function gives the |
dkato | 0:f782d9c66c49 | 242 | amount bytes that was acknowledged by the last acknowledgment. |
dkato | 0:f782d9c66c49 | 243 | |
dkato | 0:f782d9c66c49 | 244 | |
dkato | 0:f782d9c66c49 | 245 | --- Receiving TCP data |
dkato | 0:f782d9c66c49 | 246 | |
dkato | 0:f782d9c66c49 | 247 | TCP data reception is callback based - an application specified |
dkato | 0:f782d9c66c49 | 248 | callback function is called when new data arrives. When the |
dkato | 0:f782d9c66c49 | 249 | application has taken the data, it has to call the tcp_recved() |
dkato | 0:f782d9c66c49 | 250 | function to indicate that TCP can advertise increase the receive |
dkato | 0:f782d9c66c49 | 251 | window. |
dkato | 0:f782d9c66c49 | 252 | |
dkato | 0:f782d9c66c49 | 253 | - void tcp_recv(struct tcp_pcb *pcb, |
dkato | 0:f782d9c66c49 | 254 | err_t (* recv)(void *arg, struct tcp_pcb *tpcb, |
dkato | 0:f782d9c66c49 | 255 | struct pbuf *p, err_t err)) |
dkato | 0:f782d9c66c49 | 256 | |
dkato | 0:f782d9c66c49 | 257 | Sets the callback function that will be called when new data |
dkato | 0:f782d9c66c49 | 258 | arrives. The callback function will be passed a NULL pbuf to |
dkato | 0:f782d9c66c49 | 259 | indicate that the remote host has closed the connection. If |
dkato | 0:f782d9c66c49 | 260 | there are no errors and the callback function is to return |
dkato | 0:f782d9c66c49 | 261 | ERR_OK, then it must free the pbuf. Otherwise, it must not |
dkato | 0:f782d9c66c49 | 262 | free the pbuf so that lwIP core code can store it. |
dkato | 0:f782d9c66c49 | 263 | |
dkato | 0:f782d9c66c49 | 264 | - void tcp_recved(struct tcp_pcb *pcb, u16_t len) |
dkato | 0:f782d9c66c49 | 265 | |
dkato | 0:f782d9c66c49 | 266 | Must be called when the application has received the data. The len |
dkato | 0:f782d9c66c49 | 267 | argument indicates the length of the received data. |
dkato | 0:f782d9c66c49 | 268 | |
dkato | 0:f782d9c66c49 | 269 | |
dkato | 0:f782d9c66c49 | 270 | --- Application polling |
dkato | 0:f782d9c66c49 | 271 | |
dkato | 0:f782d9c66c49 | 272 | When a connection is idle (i.e., no data is either transmitted or |
dkato | 0:f782d9c66c49 | 273 | received), lwIP will repeatedly poll the application by calling a |
dkato | 0:f782d9c66c49 | 274 | specified callback function. This can be used either as a watchdog |
dkato | 0:f782d9c66c49 | 275 | timer for killing connections that have stayed idle for too long, or |
dkato | 0:f782d9c66c49 | 276 | as a method of waiting for memory to become available. For instance, |
dkato | 0:f782d9c66c49 | 277 | if a call to tcp_write() has failed because memory wasn't available, |
dkato | 0:f782d9c66c49 | 278 | the application may use the polling functionality to call tcp_write() |
dkato | 0:f782d9c66c49 | 279 | again when the connection has been idle for a while. |
dkato | 0:f782d9c66c49 | 280 | |
dkato | 0:f782d9c66c49 | 281 | - void tcp_poll(struct tcp_pcb *pcb, |
dkato | 0:f782d9c66c49 | 282 | err_t (* poll)(void *arg, struct tcp_pcb *tpcb), |
dkato | 0:f782d9c66c49 | 283 | u8_t interval) |
dkato | 0:f782d9c66c49 | 284 | |
dkato | 0:f782d9c66c49 | 285 | Specifies the polling interval and the callback function that should |
dkato | 0:f782d9c66c49 | 286 | be called to poll the application. The interval is specified in |
dkato | 0:f782d9c66c49 | 287 | number of TCP coarse grained timer shots, which typically occurs |
dkato | 0:f782d9c66c49 | 288 | twice a second. An interval of 10 means that the application would |
dkato | 0:f782d9c66c49 | 289 | be polled every 5 seconds. |
dkato | 0:f782d9c66c49 | 290 | |
dkato | 0:f782d9c66c49 | 291 | |
dkato | 0:f782d9c66c49 | 292 | --- Closing and aborting connections |
dkato | 0:f782d9c66c49 | 293 | |
dkato | 0:f782d9c66c49 | 294 | - err_t tcp_close(struct tcp_pcb *pcb) |
dkato | 0:f782d9c66c49 | 295 | |
dkato | 0:f782d9c66c49 | 296 | Closes the connection. The function may return ERR_MEM if no memory |
dkato | 0:f782d9c66c49 | 297 | was available for closing the connection. If so, the application |
dkato | 0:f782d9c66c49 | 298 | should wait and try again either by using the acknowledgment |
dkato | 0:f782d9c66c49 | 299 | callback or the polling functionality. If the close succeeds, the |
dkato | 0:f782d9c66c49 | 300 | function returns ERR_OK. |
dkato | 0:f782d9c66c49 | 301 | |
dkato | 0:f782d9c66c49 | 302 | The pcb is deallocated by the TCP code after a call to tcp_close(). |
dkato | 0:f782d9c66c49 | 303 | |
dkato | 0:f782d9c66c49 | 304 | - void tcp_abort(struct tcp_pcb *pcb) |
dkato | 0:f782d9c66c49 | 305 | |
dkato | 0:f782d9c66c49 | 306 | Aborts the connection by sending a RST (reset) segment to the remote |
dkato | 0:f782d9c66c49 | 307 | host. The pcb is deallocated. This function never fails. |
dkato | 0:f782d9c66c49 | 308 | |
dkato | 0:f782d9c66c49 | 309 | ATTENTION: When calling this from one of the TCP callbacks, make |
dkato | 0:f782d9c66c49 | 310 | sure you always return ERR_ABRT (and never return ERR_ABRT otherwise |
dkato | 0:f782d9c66c49 | 311 | or you will risk accessing deallocated memory or memory leaks! |
dkato | 0:f782d9c66c49 | 312 | |
dkato | 0:f782d9c66c49 | 313 | |
dkato | 0:f782d9c66c49 | 314 | If a connection is aborted because of an error, the application is |
dkato | 0:f782d9c66c49 | 315 | alerted of this event by the err callback. Errors that might abort a |
dkato | 0:f782d9c66c49 | 316 | connection are when there is a shortage of memory. The callback |
dkato | 0:f782d9c66c49 | 317 | function to be called is set using the tcp_err() function. |
dkato | 0:f782d9c66c49 | 318 | |
dkato | 0:f782d9c66c49 | 319 | - void tcp_err(struct tcp_pcb *pcb, void (* err)(void *arg, |
dkato | 0:f782d9c66c49 | 320 | err_t err)) |
dkato | 0:f782d9c66c49 | 321 | |
dkato | 0:f782d9c66c49 | 322 | The error callback function does not get the pcb passed to it as a |
dkato | 0:f782d9c66c49 | 323 | parameter since the pcb may already have been deallocated. |
dkato | 0:f782d9c66c49 | 324 | |
dkato | 0:f782d9c66c49 | 325 | |
dkato | 0:f782d9c66c49 | 326 | --- UDP interface |
dkato | 0:f782d9c66c49 | 327 | |
dkato | 0:f782d9c66c49 | 328 | The UDP interface is similar to that of TCP, but due to the lower |
dkato | 0:f782d9c66c49 | 329 | level of complexity of UDP, the interface is significantly simpler. |
dkato | 0:f782d9c66c49 | 330 | |
dkato | 0:f782d9c66c49 | 331 | - struct udp_pcb *udp_new(void) |
dkato | 0:f782d9c66c49 | 332 | |
dkato | 0:f782d9c66c49 | 333 | Creates a new UDP pcb which can be used for UDP communication. The |
dkato | 0:f782d9c66c49 | 334 | pcb is not active until it has either been bound to a local address |
dkato | 0:f782d9c66c49 | 335 | or connected to a remote address. |
dkato | 0:f782d9c66c49 | 336 | |
dkato | 0:f782d9c66c49 | 337 | - void udp_remove(struct udp_pcb *pcb) |
dkato | 0:f782d9c66c49 | 338 | |
dkato | 0:f782d9c66c49 | 339 | Removes and deallocates the pcb. |
dkato | 0:f782d9c66c49 | 340 | |
dkato | 0:f782d9c66c49 | 341 | - err_t udp_bind(struct udp_pcb *pcb, ip_addr_t *ipaddr, |
dkato | 0:f782d9c66c49 | 342 | u16_t port) |
dkato | 0:f782d9c66c49 | 343 | |
dkato | 0:f782d9c66c49 | 344 | Binds the pcb to a local address. The IP-address argument "ipaddr" |
dkato | 0:f782d9c66c49 | 345 | can be IP_ADDR_ANY to indicate that it should listen to any local IP |
dkato | 0:f782d9c66c49 | 346 | address. The function currently always return ERR_OK. |
dkato | 0:f782d9c66c49 | 347 | |
dkato | 0:f782d9c66c49 | 348 | - err_t udp_connect(struct udp_pcb *pcb, ip_addr_t *ipaddr, |
dkato | 0:f782d9c66c49 | 349 | u16_t port) |
dkato | 0:f782d9c66c49 | 350 | |
dkato | 0:f782d9c66c49 | 351 | Sets the remote end of the pcb. This function does not generate any |
dkato | 0:f782d9c66c49 | 352 | network traffic, but only set the remote address of the pcb. |
dkato | 0:f782d9c66c49 | 353 | |
dkato | 0:f782d9c66c49 | 354 | - err_t udp_disconnect(struct udp_pcb *pcb) |
dkato | 0:f782d9c66c49 | 355 | |
dkato | 0:f782d9c66c49 | 356 | Remove the remote end of the pcb. This function does not generate |
dkato | 0:f782d9c66c49 | 357 | any network traffic, but only removes the remote address of the pcb. |
dkato | 0:f782d9c66c49 | 358 | |
dkato | 0:f782d9c66c49 | 359 | - err_t udp_send(struct udp_pcb *pcb, struct pbuf *p) |
dkato | 0:f782d9c66c49 | 360 | |
dkato | 0:f782d9c66c49 | 361 | Sends the pbuf p. The pbuf is not deallocated. |
dkato | 0:f782d9c66c49 | 362 | |
dkato | 0:f782d9c66c49 | 363 | - void udp_recv(struct udp_pcb *pcb, |
dkato | 0:f782d9c66c49 | 364 | void (* recv)(void *arg, struct udp_pcb *upcb, |
dkato | 0:f782d9c66c49 | 365 | struct pbuf *p, |
dkato | 0:f782d9c66c49 | 366 | ip_addr_t *addr, |
dkato | 0:f782d9c66c49 | 367 | u16_t port), |
dkato | 0:f782d9c66c49 | 368 | void *recv_arg) |
dkato | 0:f782d9c66c49 | 369 | |
dkato | 0:f782d9c66c49 | 370 | Specifies a callback function that should be called when a UDP |
dkato | 0:f782d9c66c49 | 371 | datagram is received. |
dkato | 0:f782d9c66c49 | 372 | |
dkato | 0:f782d9c66c49 | 373 | |
dkato | 0:f782d9c66c49 | 374 | --- System initalization |
dkato | 0:f782d9c66c49 | 375 | |
dkato | 0:f782d9c66c49 | 376 | A truly complete and generic sequence for initializing the lwIP stack |
dkato | 0:f782d9c66c49 | 377 | cannot be given because it depends on additional initializations for |
dkato | 0:f782d9c66c49 | 378 | your runtime environment (e.g. timers). |
dkato | 0:f782d9c66c49 | 379 | |
dkato | 0:f782d9c66c49 | 380 | We can give you some idea on how to proceed when using the raw API. |
dkato | 0:f782d9c66c49 | 381 | We assume a configuration using a single Ethernet netif and the |
dkato | 0:f782d9c66c49 | 382 | UDP and TCP transport layers, IPv4 and the DHCP client. |
dkato | 0:f782d9c66c49 | 383 | |
dkato | 0:f782d9c66c49 | 384 | Call these functions in the order of appearance: |
dkato | 0:f782d9c66c49 | 385 | |
dkato | 0:f782d9c66c49 | 386 | - lwip_init() |
dkato | 0:f782d9c66c49 | 387 | |
dkato | 0:f782d9c66c49 | 388 | Initialize the lwIP stack and all of its subsystems. |
dkato | 0:f782d9c66c49 | 389 | |
dkato | 0:f782d9c66c49 | 390 | - netif_add(struct netif *netif, const ip4_addr_t *ipaddr, |
dkato | 0:f782d9c66c49 | 391 | const ip4_addr_t *netmask, const ip4_addr_t *gw, |
dkato | 0:f782d9c66c49 | 392 | void *state, netif_init_fn init, netif_input_fn input) |
dkato | 0:f782d9c66c49 | 393 | |
dkato | 0:f782d9c66c49 | 394 | Adds your network interface to the netif_list. Allocate a struct |
dkato | 0:f782d9c66c49 | 395 | netif and pass a pointer to this structure as the first argument. |
dkato | 0:f782d9c66c49 | 396 | Give pointers to cleared ip_addr structures when using DHCP, |
dkato | 0:f782d9c66c49 | 397 | or fill them with sane numbers otherwise. The state pointer may be NULL. |
dkato | 0:f782d9c66c49 | 398 | |
dkato | 0:f782d9c66c49 | 399 | The init function pointer must point to a initialization function for |
dkato | 0:f782d9c66c49 | 400 | your Ethernet netif interface. The following code illustrates its use. |
dkato | 0:f782d9c66c49 | 401 | |
dkato | 0:f782d9c66c49 | 402 | err_t netif_if_init(struct netif *netif) |
dkato | 0:f782d9c66c49 | 403 | { |
dkato | 0:f782d9c66c49 | 404 | u8_t i; |
dkato | 0:f782d9c66c49 | 405 | |
dkato | 0:f782d9c66c49 | 406 | for (i = 0; i < ETHARP_HWADDR_LEN; i++) { |
dkato | 0:f782d9c66c49 | 407 | netif->hwaddr[i] = some_eth_addr[i]; |
dkato | 0:f782d9c66c49 | 408 | } |
dkato | 0:f782d9c66c49 | 409 | init_my_eth_device(); |
dkato | 0:f782d9c66c49 | 410 | return ERR_OK; |
dkato | 0:f782d9c66c49 | 411 | } |
dkato | 0:f782d9c66c49 | 412 | |
dkato | 0:f782d9c66c49 | 413 | For Ethernet drivers, the input function pointer must point to the lwIP |
dkato | 0:f782d9c66c49 | 414 | function ethernet_input() declared in "netif/etharp.h". Other drivers |
dkato | 0:f782d9c66c49 | 415 | must use ip_input() declared in "lwip/ip.h". |
dkato | 0:f782d9c66c49 | 416 | |
dkato | 0:f782d9c66c49 | 417 | - netif_set_default(struct netif *netif) |
dkato | 0:f782d9c66c49 | 418 | |
dkato | 0:f782d9c66c49 | 419 | Registers the default network interface. |
dkato | 0:f782d9c66c49 | 420 | |
dkato | 0:f782d9c66c49 | 421 | - netif_set_link_up(struct netif *netif) |
dkato | 0:f782d9c66c49 | 422 | |
dkato | 0:f782d9c66c49 | 423 | This is the hardware link state; e.g. whether cable is plugged for wired |
dkato | 0:f782d9c66c49 | 424 | Ethernet interface. This function must be called even if you don't know |
dkato | 0:f782d9c66c49 | 425 | the current state. Having link up and link down events is optional but |
dkato | 0:f782d9c66c49 | 426 | DHCP and IPv6 discover benefit well from those events. |
dkato | 0:f782d9c66c49 | 427 | |
dkato | 0:f782d9c66c49 | 428 | - netif_set_up(struct netif *netif) |
dkato | 0:f782d9c66c49 | 429 | |
dkato | 0:f782d9c66c49 | 430 | This is the administrative (= software) state of the netif, when the |
dkato | 0:f782d9c66c49 | 431 | netif is fully configured this function must be called. |
dkato | 0:f782d9c66c49 | 432 | |
dkato | 0:f782d9c66c49 | 433 | - dhcp_start(struct netif *netif) |
dkato | 0:f782d9c66c49 | 434 | |
dkato | 0:f782d9c66c49 | 435 | Creates a new DHCP client for this interface on the first call. |
dkato | 0:f782d9c66c49 | 436 | |
dkato | 0:f782d9c66c49 | 437 | You can peek in the netif->dhcp struct for the actual DHCP status. |
dkato | 0:f782d9c66c49 | 438 | |
dkato | 0:f782d9c66c49 | 439 | - sys_check_timeouts() |
dkato | 0:f782d9c66c49 | 440 | |
dkato | 0:f782d9c66c49 | 441 | When the system is running, you have to periodically call |
dkato | 0:f782d9c66c49 | 442 | sys_check_timeouts() which will handle all timers for all protocols in |
dkato | 0:f782d9c66c49 | 443 | the stack; add this to your main loop or equivalent. |
dkato | 0:f782d9c66c49 | 444 | |
dkato | 0:f782d9c66c49 | 445 | |
dkato | 0:f782d9c66c49 | 446 | --- Optimalization hints |
dkato | 0:f782d9c66c49 | 447 | |
dkato | 0:f782d9c66c49 | 448 | The first thing you want to optimize is the lwip_standard_checksum() |
dkato | 0:f782d9c66c49 | 449 | routine from src/core/inet.c. You can override this standard |
dkato | 0:f782d9c66c49 | 450 | function with the #define LWIP_CHKSUM <your_checksum_routine>. |
dkato | 0:f782d9c66c49 | 451 | |
dkato | 0:f782d9c66c49 | 452 | There are C examples given in inet.c or you might want to |
dkato | 0:f782d9c66c49 | 453 | craft an assembly function for this. RFC1071 is a good |
dkato | 0:f782d9c66c49 | 454 | introduction to this subject. |
dkato | 0:f782d9c66c49 | 455 | |
dkato | 0:f782d9c66c49 | 456 | Other significant improvements can be made by supplying |
dkato | 0:f782d9c66c49 | 457 | assembly or inline replacements for htons() and htonl() |
dkato | 0:f782d9c66c49 | 458 | if you're using a little-endian architecture. |
dkato | 0:f782d9c66c49 | 459 | #define lwip_htons(x) <your_htons> |
dkato | 0:f782d9c66c49 | 460 | #define lwip_htonl(x) <your_htonl> |
dkato | 0:f782d9c66c49 | 461 | If you #define them to htons() and htonl(), you should |
dkato | 0:f782d9c66c49 | 462 | #define LWIP_DONT_PROVIDE_BYTEORDER_FUNCTIONS to prevent lwIP from |
dkato | 0:f782d9c66c49 | 463 | defining hton*/ntoh* compatibility macros. |
dkato | 0:f782d9c66c49 | 464 | |
dkato | 0:f782d9c66c49 | 465 | Check your network interface driver if it reads at |
dkato | 0:f782d9c66c49 | 466 | a higher speed than the maximum wire-speed. If the |
dkato | 0:f782d9c66c49 | 467 | hardware isn't serviced frequently and fast enough |
dkato | 0:f782d9c66c49 | 468 | buffer overflows are likely to occur. |
dkato | 0:f782d9c66c49 | 469 | |
dkato | 0:f782d9c66c49 | 470 | E.g. when using the cs8900 driver, call cs8900if_service(ethif) |
dkato | 0:f782d9c66c49 | 471 | as frequently as possible. When using an RTOS let the cs8900 interrupt |
dkato | 0:f782d9c66c49 | 472 | wake a high priority task that services your driver using a binary |
dkato | 0:f782d9c66c49 | 473 | semaphore or event flag. Some drivers might allow additional tuning |
dkato | 0:f782d9c66c49 | 474 | to match your application and network. |
dkato | 0:f782d9c66c49 | 475 | |
dkato | 0:f782d9c66c49 | 476 | For a production release it is recommended to set LWIP_STATS to 0. |
dkato | 0:f782d9c66c49 | 477 | Note that speed performance isn't influenced much by simply setting |
dkato | 0:f782d9c66c49 | 478 | high values to the memory options. |
dkato | 0:f782d9c66c49 | 479 | |
dkato | 0:f782d9c66c49 | 480 | For more optimization hints take a look at the lwIP wiki. |
dkato | 0:f782d9c66c49 | 481 | |
dkato | 0:f782d9c66c49 | 482 | --- Zero-copy MACs |
dkato | 0:f782d9c66c49 | 483 | |
dkato | 0:f782d9c66c49 | 484 | To achieve zero-copy on transmit, the data passed to the raw API must |
dkato | 0:f782d9c66c49 | 485 | remain unchanged until sent. Because the send- (or write-)functions return |
dkato | 0:f782d9c66c49 | 486 | when the packets have been enqueued for sending, data must be kept stable |
dkato | 0:f782d9c66c49 | 487 | after that, too. |
dkato | 0:f782d9c66c49 | 488 | |
dkato | 0:f782d9c66c49 | 489 | This implies that PBUF_RAM/PBUF_POOL pbufs passed to raw-API send functions |
dkato | 0:f782d9c66c49 | 490 | must *not* be reused by the application unless their ref-count is 1. |
dkato | 0:f782d9c66c49 | 491 | |
dkato | 0:f782d9c66c49 | 492 | For no-copy pbufs (PBUF_ROM/PBUF_REF), data must be kept unchanged, too, |
dkato | 0:f782d9c66c49 | 493 | but the stack/driver will/must copy PBUF_REF'ed data when enqueueing, while |
dkato | 0:f782d9c66c49 | 494 | PBUF_ROM-pbufs are just enqueued (as ROM-data is expected to never change). |
dkato | 0:f782d9c66c49 | 495 | |
dkato | 0:f782d9c66c49 | 496 | Also, data passed to tcp_write without the copy-flag must not be changed! |
dkato | 0:f782d9c66c49 | 497 | |
dkato | 0:f782d9c66c49 | 498 | Therefore, be careful which type of PBUF you use and if you copy TCP data |
dkato | 0:f782d9c66c49 | 499 | or not! |