Program for current regulation of BLDC motor.
Dependents: CurrentMeasurement
Fork of CurrentRegulation by
CurrentRegulation.cpp
- Committer:
- dfraj
- Date:
- 2015-08-25
- Revision:
- 2:f71d1fb67922
- Parent:
- 1:9406a55d8a12
File content as of revision 2:f71d1fb67922:
#include "CurrentRegulation.h"
#include "BLDCmotorDriver.h"
#include "PI.h"
CurrentRegulation::CurrentRegulation(PinName pI_A, PinName pI_B, PinName pI_C, PinName pI_TOTAL, PinName pGH_A, PinName pGH_B, PinName pGH_C, PinName pGL_A, PinName pGL_B, PinName pGL_C,
PinName pH1, PinName pH2, PinName pH3, PinName pFault):I_A(pI_A), I_B(pI_B), I_C(pI_C), I_TOTAL(pI_TOTAL), m(pGH_A, pGH_B, pGH_C, pGL_A, pGL_B, pGL_C, pH1, pH2, pH3, LED1){
setValues(1e-3, 1e3, 40e3, 20e3, 3.3);
//measure.attach_us(this, &CurrentRegulation::measuring, 500);
}
void CurrentRegulation::setValues(double R_sh, double R_1, double R_fs, double R_ft, double V_ref){
this->R_sh = R_sh;
this->R_1 = R_1;
this->R_fs = R_fs;
this->R_ft = R_ft;
this->V_ref = V_ref;
}
double CurrentRegulation::calculateCurrentA(){
double V_outa = (V_ref - (V_ref/2))/(1 - 0) * I_A.read() + (V_ref/2);
return I_A_ = (R_1 * V_outa)/(R_sh * R_fs) - (R_1 * (V_ref/2))/(R_sh * R_fs);
}
double CurrentRegulation::calculateCurrentB(){
double V_outb = (V_ref - (V_ref/2))/(1 - 0) * I_B.read() + (V_ref/2);
return I_B_ = (R_1 * V_outb)/(R_sh * R_fs) - (R_1 * (V_ref/2))/(R_sh * R_fs);
}
double CurrentRegulation::calculateCurrentC(){
double V_outc = (V_ref - (V_ref/2))/(1 - 0) * I_C.read() + (V_ref/2);
return I_C_ = (R_1 * V_outc)/(R_sh * R_fs) - (R_1 * (V_ref/2))/(R_sh * R_fs);
}
double CurrentRegulation::calculateTotalCurrent(){
double V_outt = (V_ref - (V_ref/2))/(1 - 0) * I_TOTAL.read()+(V_ref/2);
return I_TOTAL_ = (R_1 * V_outt)/(R_sh * R_fs) - (R_1 * (V_ref/2))/(R_sh * R_fs);
}
double CurrentRegulation::phaseCurrent(int currentSector){
switch(currentSector){
case 0:
I_Ar = calculateCurrentC();
calculateTotalCurrent();
break;
case 1:
I_Ar = calculateCurrentC();
calculateTotalCurrent();
break;
case 2:
I_Ar = calculateCurrentA();
calculateTotalCurrent();
break;
case 3:
I_Ar = calculateCurrentA();
calculateTotalCurrent();
break;
case 4:
I_Ar = calculateCurrentB();
calculateTotalCurrent();
break;
case 5:
I_Ar = calculateCurrentB();
calculateTotalCurrent();
break;
}
return I_Ar;
}
void CurrentRegulation::getValue(){
sector = m.getSector();
procesValue = phaseCurrent(sector);
}
void CurrentRegulation::measuring(){
measure.attach_us(this, &CurrentRegulation::getValue, 500);
}
double CurrentRegulation::calculateKr(){
T_pv = 1e-4;
T_ch = 25e-6;
zeta = 1.2;
K_ch = 50.0;
K_pv = 1.0;
T_I = 1.428e-3;
K_a = 4.76;
T_suma = (T_pv + T_ch);
K_oR = 1/(4 * (zeta * zeta) * T_suma);
return K_R = (K_oR * T_I)/(K_a * K_ch * K_pv);
}
/*void CurrentRegulation::input(double in){
setPoint = 41.25 * in;
}
*/
void CurrentRegulation::setOutput(double in){
K_R = calculateKr();
T_d = 500e-6;
PI reg(K_R, T_I, T_d);
setPoint = 41.25 * in;
u = setPoint - procesValue;
reg.in(u);
output = reg.out();
m.setDutyCycle(output);
}
Dean Fraj
