Darley Gonzalez
/
MPU_6050_Hello_World
programa para hacer la lectura de un sensor MPU6050, el cual entrega el valor de gyro y del acelerómetro.
main.cpp
- Committer:
- 213468891
- Date:
- 2018-10-18
- Revision:
- 0:1221112820f7
- Child:
- 1:4f9708c81c3a
File content as of revision 0:1221112820f7:
/*################################################################################# Program Name : MPU6050 Hello World Author : Crispin Mukalay Date Modified : 17/10/2018 Compiler : ARMmbed Tested On : NUCLEO-F446RE Description : Demonstrates the use of the MPU6050 gryroscope/accelerometer/temperature sensor to read gyroscope 3-axis angular velocities(°/s) and accelerometer 3-axis accelerations (°). Requirements : * NUCLEO-F446RE Board * MPU6050 Module Circuit : * The MPU6050 module is connected as follows: VCC - 3.3V GND - GND SCL - PB10 (I2C2_SCL pin) SDA - PB3 (I2C2_SDA pin) ####################################################################################*/ #include "mbed.h" #include "MPU6050.h" #include <math.h> #define pi 3.141592654 MPU6050 AccGyro(PB_3, PB_10); // Create an MPU object called AccGyro Serial pc(SERIAL_TX, SERIAL_RX); //To use the PC as a console (display output) int16_t Ax, Ay, Az, Gx, Gy, Gz; float Ax_f, Ay_f, Az_f; double Gx_f, Gy_f, Gz_f; float Ax_f_sum, Ay_f_sum, Az_f_sum, Gx_f_sum, Gy_f_sum, Gz_f_sum; float roll, pitch, yaw; int main() { uint16_t AccelReadings[3] = {0, 0, 0}; uint16_t GyroReadings[3] = {0, 0, 0}; uint8_t DevId; pc.printf("Starting MPU6050 test...\n"); DevId = AccGyro.getWhoAmI(); if(DevId == 0x68){ pc.printf("\n"); pc.printf("MPU6050 detected...\n"); pc.printf("Device ID is: 0x%02x\n", DevId); pc.printf("\n"); }else{ pc.printf("\n"); pc.printf("MPU6050 not found...\n"); while(1); } // The device will come up in sleep mode upon power-up. AccGyro.setPowerCtl_1(0x00, 0x00, 0x00, 0x00, INT_8MHz_OSC); // Disable sleep mode wait(.001); // Full scale, +/-2000°/s, 16.4LSB°/s. AccGyro.setGyroConfig(GYRO_ST_OFF, GFS_2000dps); // Accelerometer elf-test trigger off. wait(.001); // Full scale, +/-16g, 2048LSB/g. AccGyro.setAccelConfig(ACC_ST_OFF, AFS_16g); // Gyroscope self-test trigger off. wait(.001); while (true) { wait(0.2); Ax_f_sum = 0; Ay_f_sum = 0; Az_f_sum = 0; Gx_f_sum = 0; Gy_f_sum = 0; Gz_f_sum = 0; for(int i = 0; i < 10; i = i + 1) // Take ten analog input readings { AccGyro.readAccel(AccelReadings); // Extract accelerometer measurements AccGyro.readGyro(GyroReadings); // Extract gyroscope measurements // 2s complement acclerometer and gyroscope values Ax = AccelReadings[0]; Ay = AccelReadings[1]; Az = AccelReadings[2]; Gx = GyroReadings[0]; Gy = GyroReadings[1]; Gz = GyroReadings[2]; // Add every reading to the sum variables Ax_f_sum = Ax_f_sum + (float)Ax; Ay_f_sum = Ay_f_sum + (float)Ay; Az_f_sum = Az_f_sum + (float)Az; Gx_f_sum = Gx_f_sum + (float)Gx; Gy_f_sum = Gy_f_sum + (float)Gy; Gz_f_sum = Gz_f_sum + (float)Gz; } // Divide by 10 to get the averaged value Ax_f = Ax_f_sum / 10; Ay_f = Ay_f_sum / 10; Az_f = Az_f_sum / 10; Gx_f = Gx_f_sum / 10; Gy_f = Gy_f_sum / 10; Gz_f = Gz_f_sum / 10; // 1. Calculate actual roll, pitch and yaw angles in degrees // 2. Calibrate readings by adding or substracting the off-set roll = (180/pi)*(atan(Ax_f/(sqrt((Ay_f*Ay_f)+(Az_f*Az_f))))) - 4.36; pitch = (180/pi)*(atan(Ay_f/(sqrt((Ax_f*Ax_f)+(Az_f*Az_f))))) - 0.063; yaw = (180/pi)*(atan((sqrt((Ax_f*Ax_f)+(Ay_f*Ay_f)))/Az_f)) - 3.93; // Convert gyroscope readings into degrees/s Gx_f = Gx_f / 131.0; Gy_f = Gy_f / 131.0; Gz_f = Gz_f / 131.0; pc.printf("Gyro(deg/s) X: %.3f Y: %.3f Z: %.3f || Accel(deg) Roll: %.3f, Pitch: %.3f, Yaw: %.3f \n", Gx_f, Gy_f, Gz_f, roll, pitch, yaw); } }