CDC/ECM driver for mbed, based on USBDevice by mbed-official. Uses PicoTCP to access Ethernet USB device. License: GPLv2

Dependents:   USBEthernet_TEST

Fork of USB_Ethernet by Daniele Lacamera

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHAL_KL25Z.cpp Source File

USBHAL_KL25Z.cpp

00001 /* Copyright (c) 2010-2011 mbed.org, MIT License
00002 *
00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
00004 * and associated documentation files (the "Software"), to deal in the Software without
00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
00007 * Software is furnished to do so, subject to the following conditions:
00008 *
00009 * The above copyright notice and this permission notice shall be included in all copies or
00010 * substantial portions of the Software.
00011 *
00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00017 */
00018 
00019 #if defined(TARGET_KL25Z)
00020 
00021 #include "USBHAL.h"
00022 
00023 USBHAL * USBHAL::instance;
00024 
00025 static volatile int epComplete = 0;
00026 
00027 // Convert physical endpoint number to register bit
00028 #define EP(endpoint) (1<<(endpoint))
00029 
00030 // Convert physical to logical
00031 #define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
00032 
00033 // Get endpoint direction
00034 #define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
00035 #define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)
00036 
00037 #define BD_OWN_MASK        (1<<7)
00038 #define BD_DATA01_MASK     (1<<6)
00039 #define BD_KEEP_MASK       (1<<5)
00040 #define BD_NINC_MASK       (1<<4)
00041 #define BD_DTS_MASK        (1<<3)
00042 #define BD_STALL_MASK      (1<<2)
00043 
00044 #define TX    1
00045 #define RX    0
00046 #define ODD   0
00047 #define EVEN  1
00048 // this macro waits a physical endpoint number
00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 *  odd)))
00050 
00051 #define SETUP_TOKEN    0x0D
00052 #define IN_TOKEN       0x09
00053 #define OUT_TOKEN      0x01
00054 #define TOK_PID(idx)   ((bdt[idx].info >> 2) & 0x0F)
00055 
00056 // for each endpt: 8 bytes
00057 typedef struct BDT {
00058     uint8_t   info;       // BD[0:7]
00059     uint8_t   dummy;      // RSVD: BD[8:15]
00060     uint16_t  byte_count; // BD[16:32]
00061     uint32_t  address;    // Addr
00062 } BDT; 
00063 
00064 
00065 // there are:
00066 //    * 16 bidirectionnal endpt -> 32 physical endpt
00067 //    * as there are ODD and EVEN buffer -> 32*2 bdt
00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
00069 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
00070 uint8_t * endpoint_buffer_iso[2*2];
00071 
00072 static uint8_t set_addr = 0;
00073 static uint8_t addr = 0;
00074 
00075 static uint32_t Data1  = 0x55555555;
00076 
00077 static uint32_t frameNumber() {
00078     return((USB0->FRMNUML | (USB0->FRMNUMH << 8) & 0x07FF));
00079 }
00080 
00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
00082     return 0;
00083 }
00084 
00085 USBHAL::USBHAL(void) {    
00086     // Disable IRQ
00087     NVIC_DisableIRQ(USB0_IRQn);
00088     
00089     // fill in callback array
00090     epCallback[0] = &USBHAL::EP1_OUT_callback;
00091     epCallback[1] = &USBHAL::EP1_IN_callback;
00092     epCallback[2] = &USBHAL::EP2_OUT_callback;
00093     epCallback[3] = &USBHAL::EP2_IN_callback;
00094     epCallback[4] = &USBHAL::EP3_OUT_callback;
00095     epCallback[5] = &USBHAL::EP3_IN_callback;
00096     epCallback[6] = &USBHAL::EP4_OUT_callback;
00097     epCallback[7] = &USBHAL::EP4_IN_callback;
00098     epCallback[8] = &USBHAL::EP5_OUT_callback;
00099     epCallback[9] = &USBHAL::EP5_IN_callback;
00100     epCallback[10] = &USBHAL::EP6_OUT_callback;
00101     epCallback[11] = &USBHAL::EP6_IN_callback;
00102     epCallback[12] = &USBHAL::EP7_OUT_callback;
00103     epCallback[13] = &USBHAL::EP7_IN_callback;
00104     epCallback[14] = &USBHAL::EP8_OUT_callback;
00105     epCallback[15] = &USBHAL::EP8_IN_callback;
00106     epCallback[16] = &USBHAL::EP9_OUT_callback;
00107     epCallback[17] = &USBHAL::EP9_IN_callback;
00108     epCallback[18] = &USBHAL::EP10_OUT_callback;
00109     epCallback[19] = &USBHAL::EP10_IN_callback;
00110     epCallback[20] = &USBHAL::EP11_OUT_callback;
00111     epCallback[21] = &USBHAL::EP11_IN_callback;
00112     epCallback[22] = &USBHAL::EP12_OUT_callback;
00113     epCallback[23] = &USBHAL::EP12_IN_callback;
00114     epCallback[24] = &USBHAL::EP13_OUT_callback;
00115     epCallback[25] = &USBHAL::EP13_IN_callback;
00116     epCallback[26] = &USBHAL::EP14_OUT_callback;
00117     epCallback[27] = &USBHAL::EP14_IN_callback;
00118     epCallback[28] = &USBHAL::EP15_OUT_callback;
00119     epCallback[29] = &USBHAL::EP15_IN_callback;
00120     
00121     
00122     // choose usb src as PLL
00123     SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK);
00124     
00125     // enable OTG clock
00126     SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
00127 
00128     // Attach IRQ
00129     instance = this;
00130     NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
00131     NVIC_EnableIRQ(USB0_IRQn);
00132     
00133     // USB Module Configuration
00134     // Reset USB Module
00135     USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
00136     while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
00137     
00138     // Set BDT Base Register
00139     USB0->BDTPAGE1=(uint8_t)((uint32_t)bdt>>8);
00140     USB0->BDTPAGE2=(uint8_t)((uint32_t)bdt>>16);
00141     USB0->BDTPAGE3=(uint8_t)((uint32_t)bdt>>24);
00142 
00143     // Clear interrupt flag
00144     USB0->ISTAT = 0xff;
00145 
00146     // USB Interrupt Enablers
00147     USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK | 
00148                    USB_INTEN_SOFTOKEN_MASK | 
00149                    USB_INTEN_ERROREN_MASK  |
00150                    USB_INTEN_USBRSTEN_MASK;
00151     
00152     // Disable weak pull downs 
00153     USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);   
00154     
00155     USB0->USBTRC0 |= 0x40;
00156 }
00157 
00158 USBHAL::~USBHAL(void) { }
00159 
00160 void USBHAL::connect(void) {
00161     // enable USB
00162     USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
00163     // Pull up enable
00164     USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
00165 }
00166 
00167 void USBHAL::disconnect(void) {
00168     // disable USB
00169     USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
00170     // Pull up disable
00171     USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
00172 }
00173 
00174 void USBHAL::configureDevice(void) {
00175     // not needed
00176 }
00177 
00178 void USBHAL::unconfigureDevice(void) {
00179     // not needed
00180 }
00181 
00182 void USBHAL::setAddress(uint8_t address) {
00183     // we don't set the address now otherwise the usb controller does not ack
00184     // we set a flag instead
00185     // see usbisr when an IN token is received
00186     set_addr = 1;
00187     addr = address;
00188 }
00189 
00190 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
00191     uint32_t handshake_flag = 0;
00192     uint8_t * buf;
00193 
00194     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00195         return false;
00196     }
00197 
00198     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00199 
00200     if ((flags & ISOCHRONOUS) == 0) {
00201         handshake_flag = USB_ENDPT_EPHSHK_MASK;
00202         if (IN_EP(endpoint)) {
00203             endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD )] = (uint8_t *) malloc (64*2);
00204             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD )][0];
00205         } else {
00206             endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD )] = (uint8_t *) malloc (64*2);
00207             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD )][0];
00208         }
00209     } else {
00210         if (IN_EP(endpoint)) {
00211             endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2);
00212             buf = &endpoint_buffer_iso[2][0];
00213         } else {
00214             endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2);
00215             buf = &endpoint_buffer_iso[0][0];
00216         }
00217     }
00218 
00219     // IN endpt -> device to host (TX)
00220     if (IN_EP(endpoint)) {
00221         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00222                                               USB_ENDPT_EPTXEN_MASK;  // en TX (IN) tran
00223         bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
00224         bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
00225     }
00226     // OUT endpt -> host to device (RX)
00227     else {
00228         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00229                                               USB_ENDPT_EPRXEN_MASK;  // en RX (OUT) tran.
00230         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
00231         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address    = (uint32_t) buf;
00232         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info       = BD_OWN_MASK | BD_DTS_MASK;
00233         bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info       = 0;
00234     }
00235 
00236     Data1 |= (1 << endpoint);
00237 
00238     return true;
00239 }
00240 
00241 // read setup packet
00242 void USBHAL::EP0setup(uint8_t *buffer) {
00243     uint32_t sz;
00244     endpointReadResult(EP0OUT, buffer, &sz);
00245 }
00246 
00247 void USBHAL::EP0readStage(void) {
00248     Data1 &= ~1UL;  // set DATA0
00249     bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
00250 }
00251 
00252 void USBHAL::EP0read(void) {
00253     uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
00254     bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
00255 }
00256 
00257 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
00258     uint32_t sz;
00259     endpointReadResult(EP0OUT, buffer, &sz);
00260     return sz;
00261 }
00262 
00263 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
00264     endpointWrite(EP0IN, buffer, size);
00265 }
00266 
00267 void USBHAL::EP0getWriteResult(void) {
00268 }
00269 
00270 void USBHAL::EP0stall(void) {
00271     stallEndpoint(EP0OUT);
00272 }
00273 
00274 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
00275     endpoint = PHY_TO_LOG(endpoint);
00276     uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
00277     bdt[idx].byte_count = maximumSize;
00278     return EP_PENDING;
00279 }
00280 
00281 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
00282     uint32_t n, sz, idx, setup = 0;
00283     uint8_t not_iso;
00284     uint8_t * ep_buf;
00285     
00286     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00287     
00288     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00289         return EP_INVALID;
00290     }
00291 
00292     // if read on a IN endpoint -> error
00293     if (IN_EP(endpoint)) {
00294         return EP_INVALID;
00295     }
00296 
00297     idx = EP_BDT_IDX(log_endpoint, RX, 0);
00298     sz  = bdt[idx].byte_count;
00299     not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
00300 
00301     //for isochronous endpoint, we don't wait an interrupt
00302     if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
00303         return EP_PENDING;
00304     }
00305 
00306     if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
00307         setup = 1;
00308     }
00309 
00310     // non iso endpoint
00311     if (not_iso) {
00312         ep_buf = endpoint_buffer[idx];
00313     } else {
00314         ep_buf = endpoint_buffer_iso[0];
00315     }
00316 
00317     for (n = 0; n < sz; n++) {
00318         buffer[n] = ep_buf[n];
00319     }
00320 
00321     if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
00322         if (setup && (buffer[6] == 0))  // if no setup data stage,
00323             Data1 &= ~1UL;              // set DATA0
00324         else 
00325             Data1 ^= (1 << endpoint);
00326     }
00327 
00328     if (((Data1 >> endpoint) & 1)) {
00329         bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
00330     }
00331     else {
00332         bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
00333     }
00334         
00335     USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
00336     *bytesRead = sz;
00337 
00338     epComplete &= ~EP(endpoint);
00339     return EP_COMPLETED;
00340 }
00341 
00342 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
00343     uint32_t idx, n;
00344     uint8_t * ep_buf;
00345 
00346     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00347         return EP_INVALID;
00348     }
00349 
00350     // if write on a OUT endpoint -> error
00351     if (OUT_EP(endpoint)) {
00352         return EP_INVALID;
00353     }
00354 
00355     idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
00356     bdt[idx].byte_count = size;
00357     
00358     
00359     // non iso endpoint
00360     if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
00361         ep_buf = endpoint_buffer[idx];
00362     } else {
00363         ep_buf = endpoint_buffer_iso[2];
00364     }
00365     
00366     for (n = 0; n < size; n++) {
00367         ep_buf[n] = data[n];
00368     }
00369     
00370     if ((Data1 >> endpoint) & 1) {
00371         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
00372     } else {
00373         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
00374     }
00375     
00376     Data1 ^= (1 << endpoint);
00377     
00378     return EP_PENDING;
00379 }
00380 
00381 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
00382     if (epComplete & EP(endpoint)) {
00383         epComplete &= ~EP(endpoint);
00384         return EP_COMPLETED;
00385     }
00386 
00387     return EP_PENDING;
00388 }
00389 
00390 void USBHAL::stallEndpoint(uint8_t endpoint) {
00391     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
00392 }
00393 
00394 void USBHAL::unstallEndpoint(uint8_t endpoint) {
00395     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00396 }
00397 
00398 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
00399     uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
00400     return (stall) ? true : false;
00401 }
00402 
00403 void USBHAL::remoteWakeup(void) {
00404     // [TODO]
00405 }
00406 
00407 
00408 void USBHAL::_usbisr(void) {
00409     instance->usbisr();
00410 }
00411 
00412 
00413 void USBHAL::usbisr(void) {
00414     uint8_t i;
00415     uint8_t istat = USB0->ISTAT;
00416 
00417     // reset interrupt
00418     if (istat & USB_ISTAT_USBRST_MASK) {            
00419         // disable all endpt
00420         for(i = 0; i < 16; i++) {
00421             USB0->ENDPOINT[i].ENDPT = 0x00;
00422         }
00423 
00424         // enable control endpoint
00425         realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
00426         realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
00427 
00428         Data1 = 0x55555555;
00429         USB0->CTL |=  USB_CTL_ODDRST_MASK;
00430 
00431         USB0->ISTAT   =  0xFF;  // clear all interrupt status flags
00432         USB0->ERRSTAT =  0xFF;  // clear all error flags
00433         USB0->ERREN   =  0xFF;  // enable error interrupt sources
00434         USB0->ADDR    =  0x00;  // set default address
00435 
00436         return;
00437     }
00438 
00439     // resume interrupt
00440     if (istat & USB_ISTAT_RESUME_MASK) {
00441         USB0->ISTAT = USB_ISTAT_RESUME_MASK;
00442     }
00443 
00444     // SOF interrupt
00445     if (istat & USB_ISTAT_SOFTOK_MASK) {
00446         USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;  
00447         // SOF event, read frame number
00448         SOF(frameNumber());
00449     }
00450     
00451     // stall interrupt
00452     if (istat & 1<<7) {
00453         if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
00454             USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00455         USB0->ISTAT |= USB_ISTAT_STALL_MASK;
00456     }
00457 
00458     // token interrupt
00459     if (istat & 1<<3) {
00460         uint32_t num  = (USB0->STAT >> 4) & 0x0F;
00461         uint32_t dir  = (USB0->STAT >> 3) & 0x01;
00462         uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
00463 
00464         // setup packet
00465         if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
00466             Data1 &= ~0x02;
00467             bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
00468             bdt[EP_BDT_IDX(0, TX, ODD)].info  &= ~BD_OWN_MASK;
00469 
00470             // EP0 SETUP event (SETUP data received)
00471             EP0setupCallback();
00472                     
00473         } else {
00474             // OUT packet
00475             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
00476                 if (num == 0)
00477                     EP0out();
00478                 else {
00479                     epComplete |= (1 << EP(num));
00480                     if ((instance->*(epCallback[EP(num) - 2]))()) {
00481                         epComplete &= ~(1 << EP(num));
00482                     }
00483                 }
00484             }
00485 
00486             // IN packet
00487             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
00488                 if (num == 0) {
00489                     EP0in();
00490                     if (set_addr == 1) {
00491                         USB0->ADDR = addr & 0x7F;
00492                         set_addr = 0;
00493                     }
00494                 }
00495                 else {
00496                     epComplete |= (1 << (EP(num) + 1));
00497                     if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
00498                         epComplete &= ~(1 << (EP(num) + 1));
00499                     }
00500                 }
00501             }
00502         }
00503 
00504         USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
00505     }
00506         
00507     // sleep interrupt
00508     if (istat & 1<<4) {
00509         USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
00510     }    
00511 
00512     // error interrupt
00513     if (istat & USB_ISTAT_ERROR_MASK) {
00514         USB0->ERRSTAT = 0xFF;
00515         USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
00516     }
00517 }
00518 
00519 
00520 #endif