stm32f103c8t6 with w5500 push cayenne

Revision:
0:954f15bd95f1
Child:
2:3e0dfce73a58
diff -r 000000000000 -r 954f15bd95f1 MPU6050.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.cpp	Thu Jul 09 12:13:56 2015 +0000
@@ -0,0 +1,319 @@
+/*   @author: Baser Kandehir 
+*    @date: July 9, 2015
+*    @license: Use this code however you'd like
+*/
+
+// Most of the code is adapted from Kris Winer's MPU6050 library
+
+#include "MPU6050.h"
+
+I2C i2c(p9,p10);         // setup i2c (SDA,SCL)  
+
+/* Set initial input parameters */
+
+// Acc Full Scale Range  +-2G 4G 8G 16G  
+enum Ascale
+{
+    AFS_2G=0,  
+    AFS_4G,
+    AFS_8G,
+    AFS_16G
+};
+
+// Gyro Full Scale Range +-250 500 1000 2000 Degrees per second
+enum Gscale
+{
+    GFS_250DPS=0,   
+    GFS_500DPS,
+    GFS_1000DPS,
+    GFS_2000DPS
+};
+
+// Sensor datas
+float ax,ay,az;
+float gx,gy,gz;
+int16_t accelData[3],gyroData[3],tempData;
+float accelBias[3] = {0, 0, 0};  // Bias corrections for acc
+float gyroBias[3] = {0, 0, 0};   // Bias corrections for gyro 
+
+// Specify sensor full scale range
+int Ascale = AFS_2G;
+int Gscale = GFS_250DPS;
+
+// Scale resolutions per LSB for the sensors
+float aRes, gRes; 
+
+// Calculates Acc resolution
+void MPU6050::getAres()
+{
+    switch(Ascale)
+    {
+        case AFS_2G:
+            aRes = 2.0/32768.0;
+            break;
+        case AFS_4G:
+            aRes = 4.0/32768.0;
+            break;
+        case AFS_8G:
+            aRes = 8.0/32768.0;
+            break;
+        case AFS_16G:
+            aRes = 16.0/32768.0;
+            break;         
+    }
+}
+
+// Calculates Gyro resolution
+void MPU6050::getGres()
+{
+    switch(Gscale)
+    {
+        case GFS_250DPS:
+            gRes = 250.0/32768.0;
+            break;
+        case GFS_500DPS:
+            gRes = 500.0/32768.0;
+            break;
+        case GFS_1000DPS:
+            gRes = 1000.0/32768.0;
+            break;
+        case GFS_2000DPS:
+            gRes = 2000.0/32768.0;
+            break;
+    }
+}
+    
+void MPU6050::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+    char data_write[2];
+    data_write[0]=subAddress;           // I2C sends MSB first. Namely  >>|subAddress|>>|data|
+    data_write[1]=data;
+    i2c.write(address,data_write,2,0);  // i2c.write(int address, char* data, int length, bool repeated=false);  
+}
+
+char MPU6050::readByte(uint8_t address, uint8_t subAddress)
+{
+    char data_read[1];  // will store the register data    
+    char data_write[1];
+    data_write[0]=subAddress;
+    i2c.write(address,data_write,1,1);  // have not stopped yet
+    i2c.read(address,data_read,1,0);    // read the data and stop
+    return data_read[0];
+} 
+
+void MPU6050::readBytes(uint8_t address, uint8_t subAddress, uint8_t byteNum, uint8_t* dest)
+{
+    char data[14],data_write[1];  
+    data_write[0]=subAddress;      
+    i2c.write(address,data_write,1,1);
+    i2c.read(address,data,byteNum,0);
+    for(int i=0;i<byteNum;i++)         // equate the addresses
+        dest[i]=data[i];
+}
+
+// Communication test: WHO_AM_I register reading 
+void MPU6050::whoAmI()
+{
+    uint8_t whoAmI = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);   // Should return 0x68
+    ftdi.printf("I AM 0x%x \r\n",whoAmI);
+    
+    if(whoAmI==0x68)
+    {
+        ftdi.printf("MPU6050 is online... \r\n");  
+        led2=1;
+    }
+    else
+    {
+        ftdi.printf("Could not connect to MPU6050 \r\nCheck the connections... \r\n");  
+        toggler1.attach(&toggle_led1,0.1);     // toggles led1 every 100 ms
+    }  
+}
+
+// Initializes MPU6050 with the following config:
+// PLL with X axis gyroscope reference 
+// Sample rate: 200Hz for gyro and acc
+// Interrupts are disabled
+void MPU6050::init()
+{        
+    /* Wake up the device */
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);  // wake up the device by clearing the sleep bit (bit6) 
+    wait_ms(100); // wait 100 ms to stabilize  
+    
+    /* Get stable time source */
+    // PLL with X axis gyroscope reference is used to improve stability
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
+    
+    /* Configure Gyroscope and Accelerometer */
+    // Disable FSYNC, acc bandwidth: 44 Hz, gyro bandwidth: 42 Hz
+    // Sample rates: 1kHz, maximum delay: 4.9ms (which is pretty good for a 200 Hz maximum rate)
+    writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
+    
+    /* Set sample rate = gyroscope output rate/(1+SMPLRT_DIV) */
+    // SMPLRT_DIV=4 and sample rate=200 Hz (compatible with config above)
+    writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);
+    
+    /* Accelerometer configuration */
+    uint8_t temp = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp & ~0xE0);      // Clear self-test bits [7:5]
+    writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp & ~0x18);      // Clear AFS bits [4:3]
+    writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp | Ascale<<3);  // Set full scale range 
+    
+    /* Gyroscope configuration */       
+    temp = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
+    writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp & ~0xE0);      // Clear self-test bits [7:5]
+    writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp & ~0x18);      // Clear FS bits [4:3]
+    writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp | Gscale<<3);  // Set full scale range 
+}
+
+// Resets the device
+void MPU6050::reset()
+{
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80);  // set bit7 to reset the device
+    wait_ms(100);    // wait 100 ms to stabilize        
+}
+
+void MPU6050::readAccelData(int16_t* dest)
+{
+    uint8_t rawData[6];  // x,y,z acc data            
+    readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);   // read six raw data registers sequentially and write them into data array
+    
+    /* Turn the MSB LSB into signed 16-bit value */
+    dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]);  // ACCEL_XOUT
+    dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]);  // ACCEL_YOUT
+    dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]);  // ACCEL_ZOUT
+}
+
+void MPU6050::readGyroData(int16_t* dest)
+{
+    uint8_t rawData[6];  // x,y,z gyro data            
+    readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);   // read the six raw data registers sequentially and write them into data array
+    
+    /* Turn the MSB LSB into signed 16-bit value */
+    dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]);  // GYRO_XOUT
+    dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]);  // GYRO_YOUT
+    dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]);  // GYRO_ZOUT    
+}
+    
+int16_t MPU6050::readTempData()
+{
+    uint8_t rawData[2];  // temperature data
+    readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);   // read the two raw data registers sequentially and write them into data array 
+    return (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]);   // turn the MSB LSB into signed 16-bit value
+}
+
+/* Function which accumulates gyro and accelerometer data after device initialization. 
+   It calculates the average of the at-rest readings and 
+   then loads the resulting offsets into accelerometer and gyro bias registers. */
+/* 
+    IMPORTANT NOTE: In this function;
+         Resulting accel offsets are NOT pushed to the accel bias registers. accelBias[i] offsets are used in the main program.
+         Resulting gyro offsets are pushed to the gyro bias registers. gyroBias[i] offsets are NOT used in the main program.
+         Resulting data seems satisfactory.
+*/
+// dest1: accelBias dest2: gyroBias
+void MPU6050::calibrate(float* dest1, float* dest2)
+{
+    uint8_t data[12];       // data array to hold acc and gyro x,y,z data
+    uint16_t fifo_count, packet_count, count;   
+    int32_t accel_bias[3] = {0,0,0}; 
+    int32_t gyro_bias[3] = {0,0,0};
+    float aRes = 2.0/32768.0;   
+    float gRes = 250.0/32768.0;
+    uint16_t accelsensitivity = 16384; // = 1/aRes = 16384 LSB/g
+    //uint16_t gyrosensitivity = 131;    // = 1/gRes = 131 LSB/dps
+    
+    reset();     // Reset device
+    
+    /* Get stable time source */
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);    // PLL with X axis gyroscope reference is used to improve stability
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);    // Disable accel only low power mode 
+    wait(0.2);
+      
+    /* Configure device for bias calculation */
+    writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+    writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+    writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+    writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+    writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+    writeByte(MPU6050_ADDRESS, USER_CTRL, 0x04);    // Reset FIFO
+    wait(0.015);   
+    
+    /* Configure accel and gyro for bias calculation */
+    writeByte(MPU6050_ADDRESS, CONFIG, 0x01);       // Set low-pass filter to 188 Hz
+    writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);   // Set sample rate to 1 kHz
+    writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+    writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+     
+    /* Configure FIFO to capture accelerometer and gyro data for bias calculation */
+    writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+    writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable accelerometer and gyro for FIFO  (max size 1024 bytes in MPU-6050)
+    wait(0.08);                                    // Sample rate is 1 kHz, accumulates 80 samples in 80 milliseconds. 
+    // accX: 2 byte, accY: 2 byte, accZ: 2 byte. gyroX: 2 byte, gyroY: 2 byte, gyroZ: 2 byte.   12*80=960 byte < 1024 byte                                               
+                                                                                               
+    /* At end of sample accumulation, turn off FIFO sensor read */
+    writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);             // Disable FIFO
+    readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]);  // Read FIFO sample count
+    fifo_count = ((uint16_t)data[0] << 8) | data[1];
+    packet_count = fifo_count/12;                          // The number of sets of full acc and gyro data for averaging. packet_count = 80 in this case
+    
+    for(count=0; count<packet_count; count++)
+    {
+        int16_t accel_temp[3]={0,0,0}; 
+        int16_t gyro_temp[3]={0,0,0};
+        readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+        
+        /* Form signed 16-bit integer for each sample in FIFO */
+        accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ; 
+        accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+        accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+        gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+        gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+        gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+        
+        /* Sum individual signed 16-bit biases to get accumulated signed 32-bit biases */
+        accel_bias[0] += (int32_t) accel_temp[0]; 
+        accel_bias[1] += (int32_t) accel_temp[1];
+        accel_bias[2] += (int32_t) accel_temp[2];  
+        gyro_bias[0]  += (int32_t) gyro_temp[0];
+        gyro_bias[1]  += (int32_t) gyro_temp[1];
+        gyro_bias[2]  += (int32_t) gyro_temp[2];
+    }
+    
+    /* Normalize sums to get average count biases */
+    accel_bias[0] /= (int32_t) packet_count; 
+    accel_bias[1] /= (int32_t) packet_count;
+    accel_bias[2] /= (int32_t) packet_count;
+    gyro_bias[0]  /= (int32_t) packet_count;
+    gyro_bias[1]  /= (int32_t) packet_count;
+    gyro_bias[2]  /= (int32_t) packet_count;
+      
+    /* Remove gravity from the z-axis accelerometer bias calculation */  
+    if(accel_bias[2] > 0) {accel_bias[2] -= (int32_t) accelsensitivity;}  
+    else {accel_bias[2] += (int32_t) accelsensitivity;}
+    
+    /* Output scaled accelerometer biases for manual subtraction in the main program */
+    dest1[0] = accel_bias[0]*aRes;
+    dest1[1] = accel_bias[1]*aRes;
+    dest1[2] = accel_bias[2]*aRes;
+    
+    /* Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup */
+    data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+    data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+    data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+    data[3] = (-gyro_bias[1]/4)       & 0xFF;
+    data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+    data[5] = (-gyro_bias[2]/4)       & 0xFF;
+
+    /* Push gyro biases to hardware registers */
+    writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
+    writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+    writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+    writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+    writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+    writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+    /* Construct gyro bias in deg/s for later manual subtraction */
+    dest2[0] = gyro_bias[0]*gRes;   
+    dest2[1] = gyro_bias[1]*gRes;
+    dest2[2] = gyro_bias[2]*gRes;
+}