working lib with k64f

Dependents:   weather

Fork of SPI_TFT_ILI9341 by Peter Drescher

SPI_TFT_ILI9341_NXP.cpp

Committer:
colinmeikle
Date:
2015-03-20
Revision:
14:508bce6cfeb5
Parent:
13:b2b3e5430f81

File content as of revision 14:508bce6cfeb5:

/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller
 * Copyright (c) 2014 Peter Drescher - DC2PD
 * Special version for NXP LPC1768
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// 25.06.14   initial version

// only include this file if target is LPC1768
#if defined TARGET_LPC1768

#include "SPI_TFT_ILI9341.h"
#include "mbed.h"

#if defined TARGET_LPC1768
#define use_ram
#endif

// some defines for the DMA use
#define DMA_CHANNEL_ENABLE      1
#define DMA_TRANSFER_TYPE_M2P   (1UL << 11)
#define DMA_CHANNEL_TCIE        (1UL << 31)
#define DMA_CHANNEL_SRC_INC     (1UL << 26)
#define DMA_MASK_IE             (1UL << 14)
#define DMA_MASK_ITC            (1UL << 15)
#define DMA_SSP1_TX             (1UL << 2)
#define DMA_SSP0_TX             (0)
#define DMA_DEST_SSP1_TX        (2UL << 6)
#define DMA_DEST_SSP0_TX        (0UL << 6)

#define BPP         16                  // Bits per pixel

//extern Serial pc;
//extern DigitalOut xx;     // debug !!


SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name)
    : GraphicsDisplay(name), SPI(mosi,miso,sclk), _cs(cs), _reset(reset), _dc(dc)
{

    format(8,3);                 // 8 bit spi mode 3
    frequency(10000000);         // 10 Mhz SPI clock : result 2 / 4 = 8
    orientation = 0;
    char_x = 0;
    if((int)_spi.spi == SPI_0) {      // test which SPI is in use
        spi_num = 0;
    }
    if((int)_spi.spi == SPI_1) {
        spi_num = 1;
    }
    tft_reset();
}

// we define a fast write to the SPI port
void inline SPI_TFT_ILI9341::f_write(int data)
{
    while(((_spi.spi->SR) & 0x02) == 0);
    _spi.spi->DR = data;
}

// wait for SPI not busy
// we have to wait for the last bit to switch the cs off
void inline SPI_TFT_ILI9341::spi_bsy(void)
{
    while ((_spi.spi->SR & 0x10) == 0x10);       // SPI not idle
}


// switch fast between 8 and 16 bit mode
void SPI_TFT_ILI9341::spi_16(bool s)
{
    if(s) _spi.spi->CR0 |= 0x08;  // switch to 16 bit Mode
    else  _spi.spi->CR0 &= ~(0x08);  // switch to 8  bit Mode

}


int SPI_TFT_ILI9341::width()
{
    if (orientation == 0 || orientation == 2) return 240;
    else return 320;
}


int SPI_TFT_ILI9341::height()
{
    if (orientation == 0 || orientation == 2) return 320;
    else return 240;
}


void SPI_TFT_ILI9341::set_orientation(unsigned int o)
{
    orientation = o;
    wr_cmd(0x36);                     // MEMORY_ACCESS_CONTROL
    switch (orientation) {
        case 0:
            f_write(0x48);
            break;
        case 1:
            f_write(0x28);
            break;
        case 2:
            f_write(0x88);
            break;
        case 3:
            f_write(0xE8);
            break;
    }
    spi_bsy();    // wait for end of transfer
    _cs = 1;
    WindowMax();
}


// write command to tft register
// use fast command
void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd)
{
    _dc = 0;
    _cs = 0;
    f_write(cmd);
    spi_bsy();
    _dc = 1;
}

void SPI_TFT_ILI9341::wr_dat(unsigned char dat)
{
    f_write(dat);
    spi_bsy();  // wait for SPI send
}

// the ILI9341 can read
char SPI_TFT_ILI9341::rd_byte(unsigned char cmd)
{
    // has to change !!
    return(0);
}

// read 32 bit
int SPI_TFT_ILI9341::rd_32(unsigned char cmd)
{
    // has to change !!!
    return(0);
}

int  SPI_TFT_ILI9341::Read_ID(void)
{
    int r;
    r = rd_byte(0x0A);
    r = rd_byte(0x0A);
    r = rd_byte(0x0A);
    r = rd_byte(0x0A);
    return(r);
}


// Init code based on MI0283QT datasheet
// this code is called only at start
// no need to be optimized

void SPI_TFT_ILI9341::tft_reset()
{
    _cs = 1;                           // cs high
    _dc = 1;                           // dc high
    _reset = 0;                        // display reset

    wait_us(50);
    _reset = 1;                       // end hardware reset
    wait_ms(5);

    wr_cmd(0x01);                     // SW reset
    wait_ms(5);
    wr_cmd(0x28);                     // display off

    /* Start Initial Sequence ----------------------------------------------------*/
    wr_cmd(0xCF);
    f_write(0x00);
    f_write(0x83);
    f_write(0x30);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xED);
    f_write(0x64);
    f_write(0x03);
    f_write(0x12);
    f_write(0x81);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xE8);
    f_write(0x85);
    f_write(0x01);
    f_write(0x79);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xCB);
    f_write(0x39);
    f_write(0x2C);
    f_write(0x00);
    f_write(0x34);
    f_write(0x02);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xF7);
    f_write(0x20);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xEA);
    f_write(0x00);
    f_write(0x00);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xC0);                     // POWER_CONTROL_1
    f_write(0x26);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xC1);                     // POWER_CONTROL_2
    f_write(0x11);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xC5);                     // VCOM_CONTROL_1
    f_write(0x35);
    f_write(0x3E);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xC7);                     // VCOM_CONTROL_2
    f_write(0xBE);
    spi_bsy();
    _cs = 1;

    wr_cmd(0x36);                     // MEMORY_ACCESS_CONTROL
    f_write(0x48);
    spi_bsy();
    _cs = 1;

    wr_cmd(0x3A);                     // COLMOD_PIXEL_FORMAT_SET
    f_write(0x55);                 // 16 bit pixel
    spi_bsy();
    _cs = 1;

    wr_cmd(0xB1);                     // Frame Rate
    f_write(0x00);
    f_write(0x1B);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xF2);                     // Gamma Function Disable
    f_write(0x08);
    spi_bsy();
    _cs = 1;

    wr_cmd(0x26);
    f_write(0x01);                 // gamma set for curve 01/2/04/08
    spi_bsy();
    _cs = 1;

    wr_cmd(0xE0);                     // positive gamma correction
    f_write(0x1F);
    f_write(0x1A);
    f_write(0x18);
    f_write(0x0A);
    f_write(0x0F);
    f_write(0x06);
    f_write(0x45);
    f_write(0x87);
    f_write(0x32);
    f_write(0x0A);
    f_write(0x07);
    f_write(0x02);
    f_write(0x07);
    f_write(0x05);
    f_write(0x00);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xE1);                     // negativ gamma correction
    f_write(0x00);
    f_write(0x25);
    f_write(0x27);
    f_write(0x05);
    f_write(0x10);
    f_write(0x09);
    f_write(0x3A);
    f_write(0x78);
    f_write(0x4D);
    f_write(0x05);
    f_write(0x18);
    f_write(0x0D);
    f_write(0x38);
    f_write(0x3A);
    f_write(0x1F);
    spi_bsy();
    _cs = 1;

    WindowMax ();

    //wr_cmd(0x34);                     // tearing effect off
    //_cs = 1;

    //wr_cmd(0x35);                     // tearing effect on
    //_cs = 1;

    wr_cmd(0xB7);                       // entry mode
    f_write(0x07);
    spi_bsy();
    _cs = 1;

    wr_cmd(0xB6);                       // display function control
    f_write(0x0A);
    f_write(0x82);
    f_write(0x27);
    f_write(0x00);
    spi_bsy();
    _cs = 1;

    wr_cmd(0x11);                     // sleep out
    spi_bsy();
    _cs = 1;

    wait_ms(100);

    wr_cmd(0x29);                     // display on
    spi_bsy();
    _cs = 1;

    wait_ms(100);

    // setup DMA channel 0
    LPC_SC->PCONP |= (1UL << 29);       // Power up the GPDMA.
    LPC_GPDMA->DMACConfig = 1;          // enable DMA controller
    LPC_GPDMA->DMACIntTCClear = 0x1;    // Reset the Interrupt status
    LPC_GPDMA->DMACIntErrClr = 0x1;
    LPC_GPDMACH0->DMACCLLI   = 0;
}


// speed optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::pixel(int x, int y, int color)
{
    wr_cmd(0x2A);
    spi_16(1);         // switch to 8 bit Mode
    f_write(x);
    spi_bsy();
    _cs = 1;

    spi_16(0);        // switch to 8 bit Mode
    wr_cmd(0x2B);
    spi_16(1);
    f_write(y);
    spi_bsy();
    _cs = 1;
    spi_16(0);

    wr_cmd(0x2C); // send pixel
    spi_16(1);
    f_write(color);
    spi_bsy();
    _cs = 1;
    spi_16(0);
}

// optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
    wr_cmd(0x2A);
    spi_16(1);
    f_write(x);
    f_write(x+w-1);
    spi_bsy();
    _cs = 1;
    spi_16(0);

    wr_cmd(0x2B);
    spi_16(1);
    f_write(y) ;
    f_write(y+h-1);
    spi_bsy();
    _cs = 1;
    spi_16(0);
}


void SPI_TFT_ILI9341::WindowMax (void)
{
    window (0, 0, width(),  height());
}

// optimized
// use DMA to transfer pixel data to the screen
void SPI_TFT_ILI9341::cls (void)
{
    // we can use the fillrect function
    fillrect(0,0,width()-1,height()-1,_background);
}

void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color)
{

    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        pixel(x0-x, y0+y,color);
        pixel(x0+x, y0+y,color);
        pixel(x0+x, y0-y,color);
        pixel(x0-x, y0-y,color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
}

void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color)
{
    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        vline(x0-x, y0-y, y0+y, color);
        vline(x0+x, y0-y, y0+y, color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
}


// optimized for speed
void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color)
{
    int w,j;
    w = x1 - x0 + 1;
    window(x0,y,w,1);
    _dc = 0;
    _cs = 0;
    f_write(0x2C); // send pixel
    spi_bsy();
    _dc = 1;
    spi_16(1);

    for (j=0; j<w; j++) {
        f_write(color);
    }
    spi_bsy();
    spi_16(0);
    _cs = 1;
    WindowMax();
    return;
}

// optimized for speed
void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color)
{
    int h,y;
    h = y1 - y0 + 1;
    window(x,y0,1,h);
    _dc = 0;
    _cs = 0;
    f_write(0x2C); // send pixel
    spi_bsy();
    _dc = 1;
    spi_16(1);
    // switch to 16 bit Mode 3
    for (y=0; y<h; y++) {
        f_write(color);
    }
    spi_bsy();
    spi_16(0);
    _cs = 1;
    WindowMax();
    return;
}


void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color)
{
    //WindowMax();
    int   dx = 0, dy = 0;
    int   dx_sym = 0, dy_sym = 0;
    int   dx_x2 = 0, dy_x2 = 0;
    int   di = 0;

    dx = x1-x0;
    dy = y1-y0;

    if (dx == 0) {        /* vertical line */
        if (y1 > y0) vline(x0,y0,y1,color);
        else vline(x0,y1,y0,color);
        return;
    }

    if (dx > 0) {
        dx_sym = 1;
    } else {
        dx_sym = -1;
    }
    if (dy == 0) {        /* horizontal line */
        if (x1 > x0) hline(x0,x1,y0,color);
        else  hline(x1,x0,y0,color);
        return;
    }

    if (dy > 0) {
        dy_sym = 1;
    } else {
        dy_sym = -1;
    }

    dx = dx_sym*dx;
    dy = dy_sym*dy;

    dx_x2 = dx*2;
    dy_x2 = dy*2;

    if (dx >= dy) {
        di = dy_x2 - dx;
        while (x0 != x1) {

            pixel(x0, y0, color);
            x0 += dx_sym;
            if (di<0) {
                di += dy_x2;
            } else {
                di += dy_x2 - dx_x2;
                y0 += dy_sym;
            }
        }
        pixel(x0, y0, color);
    } else {
        di = dx_x2 - dy;
        while (y0 != y1) {
            pixel(x0, y0, color);
            y0 += dy_sym;
            if (di < 0) {
                di += dx_x2;
            } else {
                di += dx_x2 - dy_x2;
                x0 += dx_sym;
            }
        }
        pixel(x0, y0, color);
    }
    return;
}


void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color)
{

    if (x1 > x0) hline(x0,x1,y0,color);
    else  hline(x1,x0,y0,color);

    if (y1 > y0) vline(x0,y0,y1,color);
    else vline(x0,y1,y0,color);

    if (x1 > x0) hline(x0,x1,y1,color);
    else  hline(x1,x0,y1,color);

    if (y1 > y0) vline(x1,y0,y1,color);
    else vline(x1,y1,y0,color);

    return;
}



// optimized for speed
// use DMA
void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color)
{
    int h = y1 - y0 + 1;
    int w = x1 - x0 + 1;
    int pixel = h * w;
    unsigned int dma_count;
    window(x0,y0,w,h);

    wr_cmd(0x2C);  // send pixel
    spi_16(1);

    LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;

    switch(spi_num) {       // decide which SPI is to use
        case (0):
            LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
            LPC_SSP0->DMACR = 0x2;
            break;
        case (1):
            LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
            LPC_SSP1->DMACR = 0x2;
            break;
    }

    // start DMA
    do {
        if (pixel > 4095) {
            dma_count = 4095;
            pixel = pixel - 4095;
        } else {
            dma_count = pixel;
            pixel = 0;
        }
        LPC_GPDMA->DMACIntTCClear = 0x1;
        LPC_GPDMA->DMACIntErrClr = 0x1;
        LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
        LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
        LPC_GPDMA->DMACSoftSReq = 0x1;   // DMA request
        do {
        } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
    } while (pixel > 0);

    spi_bsy();    // wait for end of transfer
    spi_16(0);
    _cs = 1;
    WindowMax();
    return;
}

void SPI_TFT_ILI9341::locate(int x, int y)
{
    char_x = x;
    char_y = y;
}

int SPI_TFT_ILI9341::columns()
{
    return width() / font[1];
}


int SPI_TFT_ILI9341::rows()
{
    return height() / font[2];
}


int SPI_TFT_ILI9341::_putc(int value)
{
    if (value == '\n') {    // new line
        char_x = 0;
        char_y = char_y + font[2];
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    } else {
        character(char_x, char_y, value);
    }
    return value;
}


// speed optimized
// will use dma
void SPI_TFT_ILI9341::character(int x, int y, int c)
{
    unsigned int hor,vert,offset,bpl,j,i,b;
    unsigned char* zeichen;
    unsigned char z,w;
#ifdef use_ram
    unsigned int pixel;
    unsigned int p;
    unsigned int dma_count,dma_off;
    uint16_t *buffer;
#endif

    if ((c < 31) || (c > 127)) return;   // test char range

    // read font parameter from start of array
    offset = font[0];                    // bytes / char
    hor = font[1];                       // get hor size of font
    vert = font[2];                      // get vert size of font
    bpl = font[3];                       // bytes per line

    if (char_x + hor > width()) {
        char_x = 0;
        char_y = char_y + vert;
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    }
    window(char_x, char_y,hor,vert);           // setup char box
    wr_cmd(0x2C);
    spi_16(1);                                 // switch to 16 bit Mode
#ifdef use_ram
    pixel = hor * vert;                        // calculate buffer size
    buffer = (uint16_t *) malloc (2*pixel);    // we need a buffer for the font
    if(buffer != NULL) {                       // there is memory space -> use dma
        zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
        w = zeichen[0];                          // width of actual char
        p = 0;
        // construct the font into the buffer
        for (j=0; j<vert; j++) {            //  vert line
            for (i=0; i<hor; i++) {         //  horz line
                z =  zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
                b = 1 << (j & 0x07);
                if (( z & b ) == 0x00) {
                    buffer[p] = _background;
                } else {
                    buffer[p] = _foreground;
                }
                p++;
            }
        }
        // copy the buffer with DMA SPI to display
        dma_off = 0;  // offset for DMA transfer

        switch(spi_num) {       // decide which SPI is to use
            case (0):
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
                LPC_SSP0->DMACR = 0x2;
                break;
            case (1):
                LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
                LPC_SSP1->DMACR = 0x2;
                break;
        }
        // start DMA
        do {
            if (pixel > 4095) {         // this is a giant font !
                dma_count = 4095;
                pixel = pixel - 4095;
            } else {
                dma_count = pixel;
                pixel = 0;
            }
            LPC_GPDMA->DMACIntTCClear = 0x1;
            LPC_GPDMA->DMACIntErrClr = 0x1;
            LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + dma_off);
            LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) |  DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
            LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
            LPC_GPDMA->DMACSoftSReq = 0x1;
            do {
            } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
            dma_off = dma_off + dma_count;
        } while (pixel > 0);


        spi_bsy();
        free ((uint16_t *) buffer);
        spi_16(0);
    }

    else {
#endif
        zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
        w = zeichen[0];                          // width of actual char
        for (j=0; j<vert; j++) {  //  vert line
            for (i=0; i<hor; i++) {   //  horz line
                z =  zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
                b = 1 << (j & 0x07);
                if (( z & b ) == 0x00) {
                    f_write(_background);
                } else {
                    f_write(_foreground);
                }
            }
        }
        spi_bsy();
        _cs = 1;
        spi_16(0);
#ifdef use_ram
    }
#endif
    _cs = 1;
    WindowMax();
    if ((w + 2) < hor) {                   // x offset to next char
        char_x += w + 2;
    } else char_x += hor;
}


void SPI_TFT_ILI9341::set_font(unsigned char* f)
{
    font = f;
}


void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
    unsigned int  j;
    int padd;
    unsigned short *bitmap_ptr = (unsigned short *)bitmap;

    unsigned int i;

    // the lines are padded to multiple of 4 bytes in a bitmap
    padd = -1;
    do {
        padd ++;
    } while (2*(w + padd)%4 != 0);
    window(x, y, w, h);
    bitmap_ptr += ((h - 1)* (w + padd));
    wr_cmd(0x2C);  // send pixel
    spi_16(1);
    for (j = 0; j < h; j++) {         //Lines
        for (i = 0; i < w; i++) {     // one line
            f_write(*bitmap_ptr);    // one line
            bitmap_ptr++;
        }
        bitmap_ptr -= 2*w;
        bitmap_ptr -= padd;
    }
    spi_bsy();
    _cs = 1;
    spi_16(0);
    WindowMax();
}


// local filesystem is not implemented but you can add a SD card to a different SPI

int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{

#define OffsetPixelWidth    18
#define OffsetPixelHeigh    22
#define OffsetFileSize      34
#define OffsetPixData       10
#define OffsetBPP           28

    char filename[50];
    unsigned char BMP_Header[54];
    unsigned short BPP_t;
    unsigned int PixelWidth,PixelHeigh,start_data;
    unsigned int    i,off;
    int padd,j;
    unsigned short *line;

    // get the filename
    i=0;
    while (*Name_BMP!='\0') {
        filename[i++]=*Name_BMP++;
    }
    filename[i] = 0;

    FILE *Image = fopen((const char *)&filename[0], "rb");  // open the bmp file
    if (!Image) {
        return(0);      // error file not found !
    }

    fread(&BMP_Header[0],1,54,Image);      // get the BMP Header

    if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) {  // check magic byte
        fclose(Image);
        return(-1);     // error no BMP file
    }

    BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
    if (BPP_t != 0x0010) {
        fclose(Image);
        return(-2);     // error no 16 bit BMP
    }

    PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
    PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
    if (PixelHeigh > height() + y || PixelWidth > width() + x) {
        fclose(Image);
        return(-3);      // to big
    }

    start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);

    line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
    if (line == NULL) {
        return(-4);         // error no memory
    }

    // the bmp lines are padded to multiple of 4 bytes
    padd = -1;
    do {
        padd ++;
    } while ((PixelWidth * 2 + padd)%4 != 0);

    window(x, y,PixelWidth ,PixelHeigh);
    wr_cmd(0x2C);  // send pixel
    spi_16(1);
    for (j = PixelHeigh - 1; j >= 0; j--) {               //Lines bottom up
        off = j * (PixelWidth  * 2 + padd) + start_data;   // start of line
        fseek(Image, off ,SEEK_SET);
        fread(line,1,PixelWidth * 2,Image);       // read a line - slow
        for (i = 0; i < PixelWidth; i++) {        // copy pixel data to TFT
            f_write(line[i]);                  // one 16 bit pixel
        }
    }
    spi_bsy();
    _cs = 1;
    spi_16(0);
    free (line);
    fclose(Image);
    WindowMax();
    return(1);
}

#endif