Workshop 1
Dependencies: PM2_Libary Eigen
main.cpp
- Committer:
- colehelgeson
- Date:
- 2022-05-19
- Revision:
- 46:31e06f30e91c
- Parent:
- 45:a8a2670980cd
- Child:
- 47:1fe4d9135c03
File content as of revision 46:31e06f30e91c:
#include <mbed.h> #include "PM2_Libary.h" #include "Eigen/Dense.h" # define M_PI 3.14159265358979323846 // number pi //WORKSHOP 1 // logical variable main task bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); float dist_conversion(float dist); int main() { // while loop gets executed every main_task_period_ms milliseconds const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms // a coutner uint32_t main_task_cntr = 0; // led on nucleo board DigitalOut user_led(LED1); // create DigitalOut object to command user led DigitalOut enable_motors(PB_15); FastPWM pwm_M1(PB_13); FastPWM pwm_M2(PA_9); enable_motors = 1; EncoderCounter encoder_M1(PA_6, PC_7); EncoderCounter encoder_M2(PB_6, PB_7); const float max_voltage = 12.0; const float counts_per_turn = 20.0 * 78.125; const float kn = 180.0/12.0; SpeedController s1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); s1.setMaxAccelerationRPM(99999.0); s1.setSpeedCntrlGain(0.025); // AnalogIn ir_analog_in(PC_2); // float ir_distance_mV = 0.0f; // float ir_distance_cm; // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); // start timer main_task_timer.start(); while (true) { // this loop will run foreverd main_task_timer.reset(); // ir_distance_mV = ir_analog_in.read() *3.3f *1.0e3f; // ir_distance_cm = dist_conversion(ir_distance_mV); if (do_execute_main_task) { s1.setDesiredSpeedRPS(2.0); } else { s1.setDesiredSpeedRPS(0.0); } // user_led is switching its state every second if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) { user_led = !user_led; } main_task_cntr++; printf("%f\n", s1.getSpeedRPS()); // printf("IR sensor (mV): %f\nCM:%f\n", ir_distance_mV, ir_distance_cm); // do only output via serial what's really necessary (this makes your code slow) /* printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n", ir_distance_mV, ir_distance_cm, sensor_bar_avgAngleRad, speedController_M1.getSpeedRPS(), positionController_M2.getRotation()); */ // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); } } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { do_execute_main_task = !do_execute_main_task; } } // float dist_conversion(float dist){ // float a = 4.655; // float c = 1.092e+04; // return c/(dist + 1) * a; // }