Library for Real Time Clock module MCP97410 based on Library for DS1307

Fork of RTC-DS1307 by Henry Leinen

Rtc_Mcp97410.h

Committer:
charly
Date:
2015-03-08
Revision:
13:10e564536e23
Parent:
12:88f82e47b6a1

File content as of revision 13:10e564536e23:

/* Rtc_Mcp97410.h */
/*
Support for Michrochip RTC MCP97410
Should work for MCP97410, MCP97411, MCP97412 - see datasheet
Based on Library for DS1307
Chips are similar but not equal!
Ported for MCP97410 by Karl Zweimueller

Original Copyright (c) 2013 Henry Leinen (henry[dot]leinen [at] online [dot] de)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef __RTC_MCP97410_H__
#define __RTC_MCP97410_H__


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                    GLOBAL CONSTANTS RTCC - ADDRESSES
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#define  ADDR_EEPROM       0xaf       //  DEVICE ADDR for EEPROM 
#define  ADDR_RTCC         0xdf       //  DEVICE ADDR for RTCC MCHP
//.................................................................................
#define  SRAM_PTR          0x20       //  pointer of the SRAM area (RTCC) 
#define  ADDR_EEPROM_SR    0xff       //  STATUS REGISTER in the  EEPROM
//.................................................................................
#define  ADDR_SEC          0x00       //  address of SECONDS      register 
#define  ADDR_MIN          0x01       //  address of MINUTES      register 
#define  ADDR_HOUR         0x02       //  address of HOURS        register 
#define  ADDR_DAY          0x03       //  address of DAY OF WK    register 
#define  ADDR_STAT         0x03       //  address of STATUS       register 
#define  ADDR_DATE         0x04       //  address of DATE         register  
#define  ADDR_MNTH         0x05       //  address of MONTH        register 
#define  ADDR_YEAR         0x06       //  address of YEAR         register 
#define  ADDR_CTRL         0x07       //  address of CONTROL      register 
#define  ADDR_CAL          0x08       //  address of CALIB        register 
#define  ADDR_ULID         0x09       //  address of UNLOCK ID    register
//.................................................................................
#define  ADDR_ALM0SEC      0x0a       //  address of ALARMO SEC   register 
#define  ADDR_ALM0MIN      0x0b       //  address of ALARMO MIN   register 
#define  ADDR_ALM0HR       0x0c       //  address of ALARMO HOUR  register 
#define  ADDR_ALM0CTL      0x0d       //  address of ALARM0 CONTR register
#define  ADDR_ALM0DAT      0x0e       //  address of ALARMO DATE  register 
#define  ADDR_ALM0MTH      0x0f       //  address of ALARMO MONTH register 
//.................................................................................
#define  ADDR_ALM1SEC      0x11       //  address of ALARM1 SEC   register 
#define  ADDR_ALM1MIN      0x12       //  address of ALARM1 MIN   register 
#define  ADDR_ALM1HR       0x13       //  address of ALARM1 HOUR  register 
#define  ADDR_ALM1CTL      0x14       //  address of ALARM1 CONTR register
#define  ADDR_ALM1DAT      0x15       //  address of ALARM1 DATE  register 
#define  ADDR_ALM1MTH      0x16       //  address of ALARM1 MONTH register 
//.................................................................................
#define  ADDR_SAVtoBAT_MIN 0x18       //  address of T_SAVER MIN(VDD->BAT)
#define  ADDR_SAVtoBAT_HR  0x19       //  address of T_SAVER HR (VDD->BAT) 
#define  ADDR_SAVtoBAT_DAT 0x1a       //  address of T_SAVER DAT(VDD->BAT) 
#define  ADDR_SAVtoBAT_MTH 0x1b       //  address of T_SAVER MTH(VDD->BAT) 
//..................................................................................
#define  ADDR_SAVtoVDD_MIN 0x1c       //  address of T_SAVER MIN(BAT->VDD)
#define  ADDR_SAVtoVDD_HR  0x1d       //  address of T_SAVER HR (BAT->VDD) 
#define  ADDR_SAVtoVDD_DAT 0x1e       //  address of T_SAVER DAT(BAT->VDD) 
#define  ADDR_SAVtoVDD_MTH 0x1f       //  address of T_SAVER MTH(BAT->VDD)        
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                  GLOBAL CONSTANTS RTCC - INITIALIZATION
//..................................................................................
#define  START_32KHZ  0x80            //  start crystal: ST = b7    (ADDR_SEC)
#define  LP           0x20            //  mask for the leap year bit(MONTH REG)   
#define  HOUR_12      0x40            //  12 hours format           (ADDR_HOUR)   
#define  PM           0x20            //  post-meridian bit         (ADDR_HOUR) 
#define  OUT_PIN      0x80            //  = b7                      (ADDR_CTRL) 
#define  SQWE         0x40            //  SQWE = b6                 (ADDR_CTRL) 
#define  ALM_NO       0x00            //  no alarm activated        (ADDR_CTRL) 
#define  ALM_0        0x10            //  ALARM0 is       activated (ADDR_CTRL)
#define  ALM_1        0x20            //  ALARM1 is       activated (ADDR_CTRL)
#define  ALM_01       0x30            //  both alarms are activated (ADDR_CTRL)
#define  MFP_01H      0x00            //  MFP = SQVAW(01 HERZ)      (ADDR_CTRL)  
#define  MFP_04K      0x01            //  MFP = SQVAW(04 KHZ)       (ADDR_CTRL)  
#define  MFP_08K      0x02            //  MFP = SQVAW(08 KHZ)       (ADDR_CTRL)  
#define  MFP_32K      0x03            //  MFP = SQVAW(32 KHZ)       (ADDR_CTRL)  
#define  MFP_64H      0x04            //  MFP = SQVAW(64 HERZ)      (ADDR_CTRL)
#define  ALMx_POL     0x80            //  polarity of MFP on alarm  (ADDR_ALMxCTL)   
#define  ALMxC_SEC    0x00            //  ALARM compare on SEC      (ADDR_ALMxCTL)              
#define  ALMxC_MIN    0x10            //  ALARM compare on MIN      (ADDR_ALMxCTL)   
#define  ALMxC_HR     0x20            //  ALARM compare on HOUR     (ADDR_ALMxCTL)   
#define  ALMxC_DAY    0x30            //  ALARM compare on DAY      (ADDR_ALMxCTL)   
#define  ALMxC_DAT    0x40            //  ALARM compare on DATE     (ADDR_ALMxCTL)   
#define  ALMxC_ALL    0x70            //  ALARM compare on all param(ADDR_ALMxCTL)    
#define  ALMx_IF      0x08            //  MASK of the ALARM_IF      (ADDR_ALMxCTL)
#define  OSCON        0x20            //  state of the oscillator(running or not)
#define  VBATEN       0x08            //  enable battery for back-up         

/** Class Rtc_Mcp97410 implements the real time clock module MCP97410
 *
 * You can read the clock and set a new time and date.
 * It is also possible to start and stop the clock.
 * Rtc_Mcp97410 allows you to display the time in a 12h or 24h format.
 * Based on Library for DS1307 by Henry Leinen.
 * Ported for MC97410 by Karl Zweimueller.
 */
class Rtc_Mcp97410
{
public:
    /** Structure which is used to exchange the time and date
     */
    typedef struct {
        int sec;        /*!< seconds [0..59] */
        int min;        /*!< minutes {0..59] */
        int hour;       /*!< hours [0..23] */
        int wday;       /*!< weekday [1..7, where 1 = sunday, 2 = monday, ... */
        int date;       /*!< day of month [0..31] */
        int mon;        /*!< month of year [1..12] */
        int year;       /*!< year [2000..2255] */
    } Time_rtc;


    /** RateSelect specifies the valid frequency values for the square wave output
     */
    typedef enum {
        RS1Hz = 0,
        RS4kHz = 1,
        RS8kHz = 2,
        RS32kHz = 3
    } SqwRateSelect_t;
    

protected:
    I2C*    _i2c;

    static const char *m_weekDays[];

public:
    /** public constructor which creates the real time clock object
     *
     * @param i2c : Pointer to I2C-Object for I2C-Interface.
     *
     */
    Rtc_Mcp97410(I2C* i2c);

    ~Rtc_Mcp97410();

    /** Read the current time from RTC chip
     *
     * @param time : reference to a struct tm which will be filled with the time from rtc
     *
     * @returns true if successful, otherwise an acknowledge error occured
     */
    virtual bool getTime(Time_rtc& time);

    /** Write the given time onto the RTC chip (and enable Battery-Backup)
     *
     * @param time : refereence to a struct which contains valid date and time information
     *
     * @param start : contains true if the clock shall start (or keep on running).
     *
     * @param thm : 12-hour-mode if set to true, otherwise 24-hour-mode will be set.
     *
     * @returns true if successful, otherwise an acknowledge error occured
     */
    virtual bool setTime(Time_rtc& time, bool start, bool thm);

    /** Start the clock. Please note that the seconds register need to be read and
     * written in order to start or stop the clock. This can lead to an error
     * in the time value. The recommended way of starting and stoping the clock is
     * to write the actual date and time and set the start bit accordingly.
     *
     * @returns true if the clock was started, false if a communication error occured
     */
    bool startClock();

    /** Stop the clock. Please note that the seconds register need to be read and
     * written in order to start or stop the clock. This can lead to an error
     * in the time value. The recommended way of starting and stoping the clock is
     * to write the actual date and time and set the start bit accordingly.
     *
     * @returns true if the clock was stopped, false if a communication error occured
     */
    bool stopClock();

    /** Service function to convert a weekday into a string representation
     *
     * @param wday : day of week to convert (starting with sunday = 1, monday = 2, ..., saturday = 7
     *
     * @returns the corresponding string representation
     */
    const char* weekdayToString( int wday ) {
        return m_weekDays[wday%7];
    }

    /** Enable Square Wave output. The function enables or disables the square wave output
     * of the module and sets the desired frequency.
     *
     * @param ena : if set to true, the square wave output is enabled.
     *
     * @param rs : rate select, can be either one of the four values defined by type /c RateSelect_t
     *
     * @return true if the operation was successful or false otherwise
     */
    bool setSquareWaveOutput(bool ena, SqwRateSelect_t rs);
    
    /** enable write-Operations to EEPROM
    *
    *
    */
    bool enableEEPROMWrite();

    /** disable write-Operations to EEPROM
    *
    *
    */
    bool disableEEPROMWrite();    

    /** read the OSCTRIM-Register (0x08)
    *
    * -127 .. +127
    * bit 7 is Sign
    * bit 0:6 Trim-Value
    */
    uint8_t readTrim();
    
    /** Increment TRIM-Value
    *
    * Increment TRIM-Value by one 
    */
    bool incTrim();
    
    /** Derement TRIM-Value
    *
    * Decrement TRIM-Value by one 
    */
    bool decTrim();
    
       
    /** read from EEPROM
    *
    * address from 0x00 to 0x7F
    * all 128 Bytes can be read in one chunk
    *
    * @param address : start address to read from
    *
    * @param *buffer : buffer of char to write the result to. Be sure to have enough storage
    *
    * @param len : number of bytes to read
    **/
    bool readEEPROM(int address, char* buffer, int len);
    
    /** write to EEPROM
    *
    * address from 0x00 to 0x7F
    * only maximum 8 Bytes can be written in one chunk
    *
    * @param address : start address to write
    *
    * @param *buffer : buffer of chars to write 
    *
    * @param len : number of bytes to write
    **/
    bool writeEEPROM(int address, char* buffer, int len);



    /** read 6Byte EUI-48 address from EEPROM
    *
    * @param eui48 : array to hold 6 Bytes of EUI48
    *
    */
    bool readEUI48(uint8_t* eui48);

    /** write 6Byte EUI-48 address to EEPROM
    *
    * be sure to enable EUI-write-Operation (UNLOCK) before
    * @param eui48 : array with 6 Bytes of EUI48
    *
    */
    bool writeEUI48(uint8_t* eui48);    

    /** read 8Byte EUI-64 address from EEPROM
    *
    * @param eui64 : array to hold 8 Bytes of EUI64
    *
    */
    bool readEUI64(uint8_t* eui64);

    /** write 8Byte EUI-64 address to EEPROM
    *
    * be sure to enable EUI-write-Operation (UNLOCK) before
    * @param eui64 : array with 8 Bytes of EUI64
    *
    */
    bool writeEUI64(uint8_t* eui64);    

    /** unlock the EUI area in the EEPROM
    *
    * write operation must immediatly follow the unlock procedure
    * after a write the EEPROM is automatically locked again
    *
    */
    bool unlockEUI();        

private:
    // read from a memory area RTC/SRAM or EEPROM. specify correct control_byte
    bool read(int control_byte, int address, char* buffer, int len);
    // write to a memory area RTC/SRAM or EEPROM. specify correct control_byte
    bool write(int control_byte, int address, char* buffer, int len);
    // read from RTC/SRAM
    bool readRTC(int address, char* buffer, int len);
    //wrtie to RTC/SRAM
    bool writeRTC(int address, char* buffer, int len);


    static int bcdToDecimal(int bcd) {
        return ((bcd&0xF0)>>4)*10 + (bcd&0x0F);
    }

    static int decimalToBcd(int dec) {
        return (dec%10) + ((dec/10)<<4);
    }
};



typedef void (*RtcCallback_t) (void);


class RtcCls : public Rtc_Mcp97410
{
protected:
    InterruptIn                 m_sqw;
    bool                        m_bUseSqw;
    time_t                      m_time;             //  Only used in case SQW is used
    
    bool                        m_bAlarmEnabled;
    RtcCallback_t               m_alarmfunc;
    time_t                      m_alarmTime;
    
public:
    RtcCls(I2C* i2c, PinName sqw, bool bUseSqw);
    
protected:
    void _callback(void);
    
public:
    time_t                      getTime();
    virtual bool                getTime(Time_rtc& time)                         { return Rtc_Mcp97410::getTime(time); }
    void                        setTime(time_t time);
    virtual bool                setTime(Time_rtc& time, bool start, bool thm)   { return Rtc_Mcp97410::setTime(time, start, thm); }
public:
    void                        setAlarm(int nSeconds, RtcCallback_t alarmfunc) {
        m_alarmfunc = alarmfunc;
        m_alarmTime = m_time + nSeconds;
        m_bAlarmEnabled = (alarmfunc == NULL) ? false : true;
    }
};

#endif // __RTC_MCP97410_H__