Fork of 24LCxx_I2C. Works for Renesas EEPROMs. Fixes problems with PageWrites over page boundaries.
Fork of 24LCxx_I2C by
24LCxx_I2C.cpp
- Committer:
- Yann
- Date:
- 2013-07-18
- Revision:
- 2:16ce7dae9019
- Parent:
- 1:bdf87ab4cdb8
- Child:
- 3:fc3eb4d2b07e
File content as of revision 2:16ce7dae9019:
/* mbed simplified access to Microchip 24LCxx Serial EEPROM devices (I2C)
* Copyright (c) 2010-2012 ygarcia, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <sstream>
#include "24LCxx_I2C.h"
namespace _24LCXX_I2C {
unsigned char C24LCXX_I2C::I2CModuleRefCounter = 0;
C24LCXX_I2C::C24LCXX_I2C(const PinName p_sda, const PinName p_scl, const unsigned char p_address, const PinName p_wp, const unsigned int p_frequency) : _internalId("") {
DEBUG_ENTER("C24LCXX_I2C")
if (C24LCXX_I2C::I2CModuleRefCounter != 0) {
error("C24LCXX_I2C: Wrong params");
}
#ifdef __DEBUG
std::ostringstream out(std::ostringstream::out);
out << "C24LCXX_I2C #" << C24LCXX_I2C::I2CModuleRefCounter;
_internalId.assign(out.str());
DEBUG("C24LCXX_I2C: _internalId='%s'", _internalId.c_str())
#endif // __DEBUG
_i2cInstance = new I2C(p_sda, p_scl, "24LCxx_I2C");
C24LCXX_I2C::I2CModuleRefCounter += 1;
DEBUG_ENTER("C24LCXX_I2C: refCounter=%d", C24LCXX_I2C::I2CModuleRefCounter)
_slaveAddress = (p_address << 1) | 0xa0; // Slave address format is: 1 0 1 0 A3 A2 A1 R/W
DEBUG("C24LCXX_I2C: I2C slave adress: 0x%02x", _slaveAddress)
_i2cInstance->frequency(p_frequency); // Set the frequency of the I2C interface
if (p_wp != NC) {
DEBUG("C24LCXX_I2C: WP managed");
_wp = new DigitalOut(p_wp);
_wp->write(0); // Disable write protect
} else {
DEBUG("C24LCXX_I2C: WP not managed");
_wp = NULL; // Not used
}
DEBUG_LEAVE("C24LCXX_I2C")
}
C24LCXX_I2C::~C24LCXX_I2C() {
DEBUG_ENTER("~C24LCXX_I2C")
// Release I2C instance
DEBUG_ENTER("~C24LCXX_I2C: refCounter=%d", C24LCXX_I2C::I2CModuleRefCounter)
C24LCXX_I2C::I2CModuleRefCounter -= 1;
if (C24LCXX_I2C::I2CModuleRefCounter == 0) {
delete _i2cInstance;
_i2cInstance = NULL;
}
// Release _wp if required
if (_wp != NULL) {
_wp->write(0);
delete _wp;
}
DEBUG_LEAVE("~C24LCXX_I2C")
}
bool C24LCXX_I2C::WriteProtect(const bool p_writeProtect) {
if (_wp != NULL) {
DEBUG("WP set to: %x", (int)p_writeProtect)
_wp->write((int)(p_writeProtect));
return true;
}
return false;
}
bool C24LCXX_I2C::EraseMemoryArea(const short p_startAddress, const int p_count, const unsigned char p_pattern) {
DEBUG_ENTER("C24LCXX_I2C::EraseMemoryArea: 0x%02x - %d - 0x%02x", p_startAddress, p_count, p_pattern)
std::vector<unsigned char> eraseBuffer(p_count, p_pattern);
return Write(p_startAddress, eraseBuffer, false);
}
bool C24LCXX_I2C::Write(const short p_address, const unsigned char p_byte) {
DEBUG_ENTER("C24LCXX_I2C::Write (byte): Memory address: 0x%02x - 0x%02x", p_address, p_byte)
// 1.Prepare buffer
char i2cBuffer[3]; // Memory address + one byte of data
// 1.1. Memory address
short address = p_address + 1; // Index start to 1
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Write (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Write (byte): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 1.2. Datas
i2cBuffer[2] = p_byte;
DEBUG("C24LCXX_I2C::Write (byte): value=0x%02x", i2cBuffer[2])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 3);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Write (byte) %x", (bool)(result == 0))
return (bool)(result == 0);
}
bool C24LCXX_I2C::Write(const short p_address, const short p_short, const C24LCXX_I2C::Mode p_mode) {
DEBUG_ENTER("C24LCXX_I2C::Write (short): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[4]; // Memory address + one short (2 bytes)
// 1.1. Memory address
short address = p_address + 1; // Index start to 1
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Write (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Write (short): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 1.2. Datas
if (p_mode == BigEndian) {
i2cBuffer[2] = (unsigned char)(p_short >> 8);
i2cBuffer[3] = (unsigned char)((unsigned char)p_short & 0xff);
} else {
i2cBuffer[2] = (unsigned char)((unsigned char)p_short & 0xff);
i2cBuffer[3] = (unsigned char)(p_short >> 8);
}
DEBUG("C24LCXX_I2C::Write (short): value=0x%02x%02x", i2cBuffer[2], i2cBuffer[3])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 4);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Write (short) %x", (bool)(result == 0))
return (bool)(result == 0);
}
bool C24LCXX_I2C::Write(const short p_address, const int p_int, const C24LCXX_I2C::Mode p_mode) {
DEBUG_ENTER("C24LCXX_I2C::Write (int): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[6]; // Memory address + one integer (4 bytes)
// 1.1. Memory address
short address = p_address + 1; // Index start to 1
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Write (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Write (int): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 1.2. Datas
if (p_mode == BigEndian) {
i2cBuffer[2] = (unsigned char)(p_int >> 24);
i2cBuffer[3] = (unsigned char)(p_int >> 16);
i2cBuffer[4] = (unsigned char)(p_int >> 8);
i2cBuffer[5] = (unsigned char)((unsigned char)p_int & 0xff);
} else {
i2cBuffer[2] = (unsigned char)((unsigned char)p_int & 0xff);
i2cBuffer[3] = (unsigned char)(p_int >> 8);
i2cBuffer[4] = (unsigned char)(p_int >> 16);
i2cBuffer[5] = (unsigned char)(p_int >> 24);
}
DEBUG("C24LCXX_I2C::Write (int): value=0x%02x%02x%02x%02x", i2cBuffer[2], i2cBuffer[3], i2cBuffer[4], i2cBuffer[5])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 6);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Write (int) %x", (bool)(result == 0))
return (bool)(result == 0);
}
bool C24LCXX_I2C::Write(const short p_address, const std::string & p_string, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Write (std::string)")
return Write(p_address, p_string.c_str(), p_storeLength, p_length2write);
}
bool C24LCXX_I2C::Write(const short p_address, const std::vector<unsigned char> & p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Write (std::vector)")
int length = (p_length2write == -1) ? p_datas.size() : p_length2write;
unsigned char array[length];
std::copy(p_datas.begin(), p_datas.end(), array);
bool result = Write(p_address, array, p_storeLength, length);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Write (std::vector): %d", result)
return result;
}
bool C24LCXX_I2C::Write(const short p_address, const char *p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Write (char *): Memory address: 0x%02x - %x - %d", p_address, p_storeLength, p_length2write)
// 1.Prepare buffer
int length = (p_length2write == -1) ? strlen(p_datas) : p_length2write;
if (p_storeLength) {
length += 4; // Add four bytes for the length as integer
}
DEBUG("C24LCXX_I2C::Write (char *): length:%d", length)
char i2cBuffer[2 + length];
// 1.1. Memory address
short address = p_address + 1;
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Write (char *): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Write (char *): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 1.2. Datas
if (p_storeLength) {
// Fill the length
i2cBuffer[2] = (unsigned char)(length >> 24);
i2cBuffer[3] = (unsigned char)(length >> 16);
i2cBuffer[4] = (unsigned char)(length >> 8);
i2cBuffer[5] = (unsigned char)((unsigned char)length & 0xff);
for (int i = 0; i < length - 4; i++) {
i2cBuffer[6 + i] = *(p_datas + i);
}
} else { // The length was not stored
for (int i = 0; i < length; i++) {
i2cBuffer[2 + i] = *(p_datas + i);
}
}
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 2 + length);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Write (char *) %x", (bool)(result == 0))
return (bool)(result == 0);
}
bool C24LCXX_I2C::Write(const short p_address, const unsigned char *p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Write (byte *): Memory address: 0x%02x - %x - %d", p_address, p_storeLength, p_length2write)
return Write(p_address, (const char *)p_datas, p_storeLength, p_length2write);
}
bool C24LCXX_I2C::Read(const short p_address, unsigned char * p_byte) {
DEBUG_ENTER("C24LCXX_I2C::Read (byte): Memory address:0x%02x", p_address)
// 1.Prepare buffer
char i2cBuffer[2];
// 1.1. Memory address
i2cBuffer[0] = (unsigned char)(p_address >> 8);
DEBUG("C24LCXX_I2C::Read (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff);
DEBUG("C24LCXX_I2C::Read (byte): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 2. Send I2C start + memory address
if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) {
wait(0.02);
DEBUG("C24LCXX_I2C::Read (byte): Write memory done")
// 2. Read data + I2C stop
int result = _i2cInstance->read(_slaveAddress, (char *)p_byte, 1);
wait(0.02);
DEBUG_LEAVE("C24LCXX_I2C::Read (byte): %x", (bool)(result == 0))
return (bool)(result == 0);
}
DEBUG_LEAVE("C24LCXX_I2C::Read (byte) (false)")
return false;
}
bool C24LCXX_I2C::Read(const short p_address, short *p_short, const C24LCXX_I2C::Mode p_mode) {
DEBUG_ENTER("C24LCXX_I2C::Read (short): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[2];
// 1.1. Memory address
i2cBuffer[0] = (unsigned char)(p_address >> 8);
DEBUG("C24LCXX_I2C::Read (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff);
DEBUG("C24LCXX_I2C::Read (short): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 2. Send I2C start + memory address
if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) {
wait(0.02);
DEBUG("C24LCXX_I2C::Read (short): Write memory done")
// 2. Read data + I2C stop
int result = _i2cInstance->read(_slaveAddress, i2cBuffer, 2);
if (result == 0) {
DEBUG("C24LCXX_I2C::Read (short): value: 0x%02x - 0x%02x", i2cBuffer[0], i2cBuffer[1])
if (p_mode == BigEndian) {
*p_short = (short)(i2cBuffer[0] << 8 | i2cBuffer[1]);
} else {
*p_short = (short)(i2cBuffer[1] << 8 | i2cBuffer[0]);
}
DEBUG_LEAVE("C24LCXX_I2C::Read (short): 0x%04x", *p_short)
return true;
}
}
DEBUG_LEAVE("C24LCXX_I2C::Read (short) (false)")
return false;
}
bool C24LCXX_I2C::Read(const short p_address, int *p_int, const C24LCXX_I2C::Mode p_mode) {
DEBUG_ENTER("C24LCXX_I2C::Read (int): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[4];
// 1.1. Memory address
i2cBuffer[0] = (unsigned char)(p_address >> 8);
DEBUG("C24LCXX_I2C::Read (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff);
DEBUG("C24LCXX_I2C::Read (int): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 2. Send I2C start + memory address
if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) {
wait(0.02);
DEBUG("C24LCXX_I2C::Read (int): Write memory done")
// 2. Read data + I2C stop
int result = _i2cInstance->read(_slaveAddress, i2cBuffer, 4);
if (result == 0) {
DEBUG("C24LCXX_I2C::Read (int): value: 0x%02x - 0x%02x - 0x%02x - 0x%02x", i2cBuffer[0], i2cBuffer[1], i2cBuffer[2], i2cBuffer[3])
wait(0.02);
if (p_mode == BigEndian) {
*p_int = (int)(i2cBuffer[0] << 24 | i2cBuffer[1] << 16 | i2cBuffer[2] << 8 | i2cBuffer[3]);
} else {
*p_int = (int)(i2cBuffer[3] << 24 | i2cBuffer[2] << 16 | i2cBuffer[1] << 8 | i2cBuffer[0]);
}
DEBUG_LEAVE("C24LCXX_I2C::Read (int): %d", *p_int)
return true;
}
DEBUG_LEAVE("C24LCXX_I2C::Read (int):false")
return false;
}
DEBUG_LEAVE("C24LCXX_I2C::Read (int) (false)")
return false;
}
bool C24LCXX_I2C::Read(const short p_address, std::vector<unsigned char> & p_datas, const bool p_readLengthFirst, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Read (vector): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write)
// 1.Prepare buffer
short address = p_address;
int length = 0;
if (p_readLengthFirst) {
if (!Read(address, &length)) { // Read the length in big endian mode
DEBUG_LEAVE("C24LCXX_I2C::Read (vector) Failed to read length")
return false;
}
DEBUG("C24LCXX_I2C::Read (vector): length= %d", length)
if (length == 0) {
return true;
}
address += 4; // Skip the length value
length -= 4; // length is the size of (string length + string)
} else {
if (p_length2write == -1) {
length = p_datas.size();
} else {
length = p_length2write;
}
}
DEBUG("C24LCXX_I2C::Read (vector): length= %d", length)
// 2. Memory address
char i2cBuffer[2];
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Read (vector): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Read (vector): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 3. Send I2C start + memory address
if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) {
wait(0.02);
DEBUG("C24LCXX_I2C::Read (vector): Write memory done")
// 4. read data + I2C stop
unsigned char buffer[length];
int result = _i2cInstance->read(_slaveAddress, (char *)buffer, length);
wait(0.02);
if (result == 0) {
p_datas.assign(buffer, buffer + length);
DEBUG_LEAVE("C24LCXX_I2C::Read (vector): %x", (bool)(result == 0))
return (bool)(result == 0);
}
}
DEBUG_LEAVE("C24LCXX_I2C::Read (vector) (false)")
return false;
}
bool C24LCXX_I2C::Read(const short p_address, std::string & p_string, const bool p_readLengthFirst, const int p_length2write) {
DEBUG_ENTER("C24LCXX_I2C::Read (string): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write)
/* std::vector<unsigned char> datas;
if (Read(p_address, datas, p_readLengthFirst, p_length2write) == true) {
p_string.assign((char *)datas.begin(), datas.size());
return true;
}
DEBUG_LEAVE("C24LCXX_I2C::Read (string) (false)")
return false;
*/
// 1.Prepare buffer
short address = p_address;
int length = -1;
if (p_readLengthFirst) { // The string was stored with its length
if (!Read(address, &length)) { // Read the length as integer in big endian mode
DEBUG_ERROR("C24LCXX_I2C::Read (string): Failed to read length")
return false;
}
wait(0.02);
DEBUG("C24LCXX_I2C::Read (string): length=%d", length)
if (length == 0) {
DEBUG_ERROR("C24LCXX_I2C::Read (string): empty")
return true;
}
address += 4; // Skip the length value size
length -= 4; // length is the size of (string length + string)
} else { // The string length is provided by p_length2write parameter
if (p_length2write == -1) {
length = p_string.size();
} else {
length = p_length2write;
p_string.resize(p_length2write);
}
}
DEBUG("C24LCXX_I2C::Read (string): Address=0x%02x - Length=%d", address, length)
// 2. Memory address
char i2cBuffer[2];
i2cBuffer[0] = (unsigned char)(address >> 8);
DEBUG("C24LCXX_I2C::Read (string): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("C24LCXX_I2C::Read (string): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 3. Send I2C start + memory address with repeat start
if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) {
wait(0.02);
DEBUG("C24LCXX_I2C::Read (string): Write memory done")
// 4. Read data + I2C stop
char buffer[length];
int result = _i2cInstance->read(_slaveAddress, (char *)buffer, length);
if (result == 0) {
p_string.assign(buffer, length);
return true;
}
}
DEBUG_LEAVE("C24LCXX_I2C::Read (string) (false)")
return false;
}
#if defined(__DEBUG)
void C24LCXX_I2C::DumpMemoryArea(const int p_address, const int p_count) {
DEBUG_ENTER("C24LCXX_I2C::DumpMemoryArea: %d - %d", p_address, p_count)
DEBUG("C24LCXX_I2C::DumpMemoryArea: Reading datas...");
std::vector<unsigned char> datas(p_count);
if (!Read(p_address, datas, false)) { // Read bytes, including the lenght indication, buffer size is not set before the call
std::cout << "C24LCXX_I2C::DumpMemoryArea: read failed\r" << std::endl;
} else {
std::cout << "C24LCXX_I2C::DumpMemoryArea: Read bytes:\r" << std::endl;
HEXADUMP(&datas[0], p_count);
std::cout << "\r" << std::endl;
}
}
#endif // _DEBUG
} // End of namespace _24LCXX_I2C
