BBR 1 Ebene

mbed-os/features/mbedtls/src/xtea.c

Committer:
borlanic
Date:
2018-05-14
Revision:
0:fbdae7e6d805

File content as of revision 0:fbdae7e6d805:

/*
 *  An 32-bit implementation of the XTEA algorithm
 *
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 *  SPDX-License-Identifier: Apache-2.0
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *  This file is part of mbed TLS (https://tls.mbed.org)
 */

#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif

#if defined(MBEDTLS_XTEA_C)

#include "mbedtls/xtea.h"

#include <string.h>

#if defined(MBEDTLS_SELF_TEST)
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define mbedtls_printf printf
#endif /* MBEDTLS_PLATFORM_C */
#endif /* MBEDTLS_SELF_TEST */

#if !defined(MBEDTLS_XTEA_ALT)

/* Implementation that should never be optimized out by the compiler */
static void mbedtls_zeroize( void *v, size_t n ) {
    volatile unsigned char *p = v; while( n-- ) *p++ = 0;
}

/*
 * 32-bit integer manipulation macros (big endian)
 */
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif

#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endif

void mbedtls_xtea_init( mbedtls_xtea_context *ctx )
{
    memset( ctx, 0, sizeof( mbedtls_xtea_context ) );
}

void mbedtls_xtea_free( mbedtls_xtea_context *ctx )
{
    if( ctx == NULL )
        return;

    mbedtls_zeroize( ctx, sizeof( mbedtls_xtea_context ) );
}

/*
 * XTEA key schedule
 */
void mbedtls_xtea_setup( mbedtls_xtea_context *ctx, const unsigned char key[16] )
{
    int i;

    memset( ctx, 0, sizeof(mbedtls_xtea_context) );

    for( i = 0; i < 4; i++ )
    {
        GET_UINT32_BE( ctx->k[i], key, i << 2 );
    }
}

/*
 * XTEA encrypt function
 */
int mbedtls_xtea_crypt_ecb( mbedtls_xtea_context *ctx, int mode,
                    const unsigned char input[8], unsigned char output[8])
{
    uint32_t *k, v0, v1, i;

    k = ctx->k;

    GET_UINT32_BE( v0, input, 0 );
    GET_UINT32_BE( v1, input, 4 );

    if( mode == MBEDTLS_XTEA_ENCRYPT )
    {
        uint32_t sum = 0, delta = 0x9E3779B9;

        for( i = 0; i < 32; i++ )
        {
            v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
            sum += delta;
            v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
        }
    }
    else /* MBEDTLS_XTEA_DECRYPT */
    {
        uint32_t delta = 0x9E3779B9, sum = delta * 32;

        for( i = 0; i < 32; i++ )
        {
            v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
            sum -= delta;
            v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
        }
    }

    PUT_UINT32_BE( v0, output, 0 );
    PUT_UINT32_BE( v1, output, 4 );

    return( 0 );
}

#if defined(MBEDTLS_CIPHER_MODE_CBC)
/*
 * XTEA-CBC buffer encryption/decryption
 */
int mbedtls_xtea_crypt_cbc( mbedtls_xtea_context *ctx, int mode, size_t length,
                    unsigned char iv[8], const unsigned char *input,
                    unsigned char *output)
{
    int i;
    unsigned char temp[8];

    if( length % 8 )
        return( MBEDTLS_ERR_XTEA_INVALID_INPUT_LENGTH );

    if( mode == MBEDTLS_XTEA_DECRYPT )
    {
        while( length > 0 )
        {
            memcpy( temp, input, 8 );
            mbedtls_xtea_crypt_ecb( ctx, mode, input, output );

            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( output[i] ^ iv[i] );

            memcpy( iv, temp, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }
    else
    {
        while( length > 0 )
        {
            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( input[i] ^ iv[i] );

            mbedtls_xtea_crypt_ecb( ctx, mode, output, output );
            memcpy( iv, output, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }

    return( 0 );
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#endif /* !MBEDTLS_XTEA_ALT */

#if defined(MBEDTLS_SELF_TEST)

/*
 * XTEA tests vectors (non-official)
 */

static const unsigned char xtea_test_key[6][16] =
{
   { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
     0x0c, 0x0d, 0x0e, 0x0f },
   { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
     0x0c, 0x0d, 0x0e, 0x0f },
   { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
     0x0c, 0x0d, 0x0e, 0x0f },
   { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00 },
   { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00 },
   { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00 }
};

static const unsigned char xtea_test_pt[6][8] =
{
    { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
    { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
    { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
    { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
    { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
    { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 }
};

static const unsigned char xtea_test_ct[6][8] =
{
    { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 },
    { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 },
    { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
    { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 },
    { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d },
    { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
};

/*
 * Checkup routine
 */
int mbedtls_xtea_self_test( int verbose )
{
    int i, ret = 0;
    unsigned char buf[8];
    mbedtls_xtea_context ctx;

    mbedtls_xtea_init( &ctx );
    for( i = 0; i < 6; i++ )
    {
        if( verbose != 0 )
            mbedtls_printf( "  XTEA test #%d: ", i + 1 );

        memcpy( buf, xtea_test_pt[i], 8 );

        mbedtls_xtea_setup( &ctx, xtea_test_key[i] );
        mbedtls_xtea_crypt_ecb( &ctx, MBEDTLS_XTEA_ENCRYPT, buf, buf );

        if( memcmp( buf, xtea_test_ct[i], 8 ) != 0 )
        {
            if( verbose != 0 )
                mbedtls_printf( "failed\n" );

            ret = 1;
            goto exit;
        }

        if( verbose != 0 )
            mbedtls_printf( "passed\n" );
    }

    if( verbose != 0 )
        mbedtls_printf( "\n" );

exit:
    mbedtls_xtea_free( &ctx );

    return( ret );
}

#endif /* MBEDTLS_SELF_TEST */

#endif /* MBEDTLS_XTEA_C */