Test program for my Multi_WS2811 library that started out as a fork of heroic/WS2811. My library uses hardware DMA on the FRDM-KL25Z to drive up to 16 strings of WS2811 or WS2812 LEDs in parallel.
Dependencies: Multi_WS2811 mbed MMA8451Q
Fork of WS2811 by
NOTE: I have accidentally pushed changes for another fork of this program that I used in the recent Georgetown Carnival Power Tool Races. When I get some time, I will restore the test program to its original glory.
You can see my power tool racer (Nevermore's Revenge) here

This tests my FRDM-KL25Z multi-string WS2811/WS2812 library. It uses the accelerometer to change the rainbow phase on two strings of LEDs as well as the touch sense to change brightness.
A video of this program in operation is here.
Here is the library that I developed to run the LEDs:
Import libraryMulti_WS2811
Library allowing up to 16 strings of 60 WS2811 or WS2812 LEDs to be driven from a single FRDM-KL25Z board. Uses hardware DMA to do a full 800 KHz rate without much CPU burden.
WS2811.cpp
- Committer:
- heroic
- Date:
- 2013-10-10
- Revision:
- 16:5f75ea93f15d
- Parent:
- 14:c97261a9a282
- Child:
- 17:b4e9d8f4baa9
File content as of revision 16:5f75ea93f15d:
// 800 KHz WS2811 driver, kinda.
//
// Parameterized and modified to use soft SPI.
// Jas Strong <jasmine@electronpusher.org>
/*****************************************************************************/
#include "LedStrip.h"
#include "WS2811.h"
#include "bitband.h"
extern int onewire_speed_multiplier; // speed setting for ws2811 et al.
WS2811::WS2811(PinName dataPin, PinName clockPin, int n) :
dat(dataPin),
clk(clockPin) {
// Allocate 3 bytes per pixel:
numLEDs = n;
pixels = (uint8_t *)malloc(numLEDs * 3);
if (pixels) {
memset(pixels, 0x00, numLEDs * 3); // Init to RGB 'off' state
}
// calibrate delay loops for NRZ
int i;
guardtime.start();
for (i=0; i<1000; i++)
/* do nothing */;
i=guardtime.read_us();
printf("ws2811: 1000 iters took %d usec.\n", i);
bogocal = (1000 / (onewire_speed_multiplier * i * 4.2)); // iterations per bitcell (417 nsec)
printf("ws2811: calibrating to %d bogojiffies.\n", bogocal);
data_mask = dat.get_mask();
clock_mask = clk.get_mask();
data_set = dat.get_set();
data_clr = dat.get_clr();
clock_set = clk.get_set();
clock_clr = clk.get_clr();
printf("ws2811: data mask 0x%x, data set reg 0x%x, data clear reg 0x%x\r\n", data_mask, data_set, data_clr);
printf("ws2811: (unused) clock mask 0x%x, clock set reg 0x%x, clock clear reg 0x%x\r\n", clock_mask, clock_set, clock_clr);
}
/*
* These chips use a one-wire protocol based on a sort of NRZ signalling- jas.
*/
void WS2811::write(uint8_t byte) {
for (int i=0; i<8; i++) {
if (byte & 0x80)
writebit(1);
else
writebit(0);
byte <<= 1;
}
}
inline void WS2811::celldelay(void) {
for (volatile int i = 0; i<bogocal; i++)
/* do nothing */ ;
}
inline void WS2811::writebit(bool bit) {
// first cell is always 1
(*data_set) = data_mask;
celldelay();
if (bit) {
(*clock_set) = data_mask; // dummy, we don't care but must take constant time
celldelay();
} else {
(*data_clr) = data_mask;
celldelay();
}
// last cell is always 0
(*data_clr) = data_mask;
celldelay();
}
void WS2811::begin(void) {
blank();
show();
}
uint16_t WS2811::numPixels(void) {
return numLEDs;
}
void WS2811::blank(void) {
memset(pixels, 0x00, numLEDs * 3);
}
void WS2811::show(void) {
uint16_t i, nl3 = numLEDs * 3; // 3 bytes per LED
while (guardtime.read_us() < 50)
/* spin */;
__disable_irq();
for (i=0; i<nl3; i++ ) {
write(pixels[i]);
}
__enable_irq();
guardtime.reset();
}
uint32_t WS2811::total_luminance(void) {
uint32_t running_total;
running_total = 0;
for (int i=0; i<numLEDs*3; i++)
running_total += pixels[i];
return running_total;
}
// Convert R,G,B to combined 32-bit color
uint32_t WS2811::Color(uint8_t r, uint8_t g, uint8_t b) {
// Take the lowest 7 bits of each value and append them end to end
// We have the top bit set high (its a 'parity-like' bit in the protocol
// and must be set!)
return ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b;
}
// store the rgb component in our array
void WS2811::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
pixels[n*3 ] = g;
pixels[n*3+1] = r;
pixels[n*3+2] = b;
}
void WS2811::setPixelR(uint16_t n, uint8_t r) {
if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
pixels[n*3+1] = r;
}
void WS2811::setPixelG(uint16_t n, uint8_t g) {
if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
pixels[n*3] = g;
}
void WS2811::setPixelB(uint16_t n, uint8_t b) {
if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
pixels[n*3+2] = b;
}
void WS2811::setPackedPixels(uint8_t * buffer, uint32_t n) {
if (n >= numLEDs) return;
memcpy(pixels, buffer, (size_t) (n*3));
}
void WS2811::setPixelColor(uint16_t n, uint32_t c) {
if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
pixels[n*3 ] = (c >> 16);
pixels[n*3+1] = (c >> 8);
pixels[n*3+2] = c;
}
Ned Konz


Generic WS2811/WS2812