Test program for my Multi_WS2811 library that started out as a fork of heroic/WS2811. My library uses hardware DMA on the FRDM-KL25Z to drive up to 16 strings of WS2811 or WS2812 LEDs in parallel.

Dependencies:   Multi_WS2811 mbed MMA8451Q

Fork of WS2811 by Heroic Robotics

NOTE: I have accidentally pushed changes for another fork of this program that I used in the recent Georgetown Carnival Power Tool Races. When I get some time, I will restore the test program to its original glory.

You can see my power tool racer (Nevermore's Revenge) here

/media/uploads/bikeNomad/img_0482.jpg

This tests my FRDM-KL25Z multi-string WS2811/WS2812 library. It uses the accelerometer to change the rainbow phase on two strings of LEDs as well as the touch sense to change brightness.

A video of this program in operation is here.

Here is the library that I developed to run the LEDs:

Import libraryMulti_WS2811

Library allowing up to 16 strings of 60 WS2811 or WS2812 LEDs to be driven from a single FRDM-KL25Z board. Uses hardware DMA to do a full 800 KHz rate without much CPU burden.

Revision:
7:3025f0e0d70a
Parent:
6:7aebe547f0f0
--- a/WS2801.cpp	Thu Oct 11 08:34:21 2012 +0000
+++ b/WS2801.cpp	Fri Oct 12 04:16:40 2012 +0000
@@ -1,114 +1,123 @@
-// Mbed library to control LPD8806-based RGB LED Strips
-// (c) 2011 Jelmer Tiete
-// This library is ported from the Arduino implementation of Adafruit Industries
-// found at: http://github.com/adafruit/LPD8806
-// and their strips: http://www.adafruit.com/products/306
-// Released under the MIT License: http://mbed.org/license/mit
-//
-// Parameterized and modified to use soft SPI.
-// Jas Strong <jasmine@electronpusher.org>
-/*****************************************************************************/
-
-#include "LedStrip.h"
-#include "WS2801.h"
-
-WS2801::WS2801(PinName dataPin, PinName clockPin, int n) :
-    dat(dataPin),
-    clk(clockPin) {
-    // Allocate 3 bytes per pixel:
-    numLEDs = n;
-    if ((pixels = (uint8_t *)malloc(numLEDs * 3))) {
-        memset(pixels, 0x00, numLEDs * 3); // Init to RGB 'off' state
-    }
-    guardtime.start();
-}
-
-/*
- *  Soft SPI clock-out implementation (CPOL = 0, CPHA = 0).
- *  Certainly not the fastest in the world but it'll do.
- *  Gets about 3.6 MHz;  could get several times as much
- *  using the bitbands directly  - jas.
- */
- 
-void WS2801::write(uint8_t byte) {
-    for (int i=0; i<8; i++) {
-        clk = 0;
-        wait_us(WS2801_DELAY);
-        dat = (byte & 0x80);
-        clk = 1;
-        wait_us(WS2801_DELAY);
-        byte <<= 1;
-    }
-    clk = 0;
-}
-
-void WS2801::begin(void) {
-    blank();
-    show();
-}
-
-uint16_t WS2801::numPixels(void) {
-    return numLEDs;
-}
-
-void WS2801::blank(void) {
-    memset(pixels, 0x00, numLEDs * 3);
-}
-
-// This is how data is pushed to the strip.  Unfortunately, the company
-// that makes the chip didnt release the  protocol document or you need
-// to sign an NDA or something stupid like that, but we reverse engineered
-// this from a strip controller and it seems to work very nicely!
-void WS2801::show(void) {
-    uint16_t i, nl3 = numLEDs * 3; // 3 bytes per LED
-    while (guardtime.read_us() < 500)
-        /* spin */;
-    for (i=0; i<nl3; i++ ) {
-        write(pixels[i]);
-    }
-
-    guardtime.reset();
-}
-
-// Convert R,G,B to combined 32-bit color
-uint32_t WS2801::Color(uint8_t r, uint8_t g, uint8_t b) {
-    // Take the lowest 7 bits of each value and append them end to end
-    // We have the top bit set high (its a 'parity-like' bit in the protocol
-    // and must be set!)
-    return ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b;
-}
-
-// store the rgb component in our array
-void WS2801::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
-    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
-
-    pixels[n*3  ] = g;
-    pixels[n*3+1] = r;
-    pixels[n*3+2] = b;
-}
-
-void WS2801::setPixelR(uint16_t n, uint8_t r) {
-    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
-
-    pixels[n*3+1] = r;
-}
-
-void WS2801::setPixelG(uint16_t n, uint8_t g) {
-    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
-
-    pixels[n*3] = g;
-}
-
-void WS2801::setPixelB(uint16_t n, uint8_t b) {
-    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
-
-    pixels[n*3+2] = b;
-}
-
-void WS2801::setPixelColor(uint16_t n, uint32_t c) {
-    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
-
-    pixels[n*3  ] = (c >> 16);
-    pixels[n*3+1] = (c >>  8);
-    pixels[n*3+2] =  c;
-}
+// Mbed library to control LPD8806-based RGB LED Strips
+// (c) 2011 Jelmer Tiete
+// This library is ported from the Arduino implementation of Adafruit Industries
+// found at: http://github.com/adafruit/LPD8806
+// and their strips: http://www.adafruit.com/products/306
+// Released under the MIT License: http://mbed.org/license/mit
+//
+// Parameterized and modified to use soft SPI.
+// Jas Strong <jasmine@electronpusher.org>
+/*****************************************************************************/
+
+#include "LedStrip.h"
+#include "WS2801.h"
+
+WS2801::WS2801(PinName dataPin, PinName clockPin, int n) :
+    dat(dataPin),
+    clk(clockPin) {
+    // Allocate 3 bytes per pixel:
+    numLEDs = n;
+    if ((pixels = (uint8_t *)malloc(numLEDs * 3))) {
+        memset(pixels, 0x00, numLEDs * 3); // Init to RGB 'off' state
+    }
+    guardtime.start();
+}
+
+/*
+ *  Soft SPI clock-out implementation (CPOL = 0, CPHA = 0).
+ *  Certainly not the fastest in the world but it'll do.
+ *  Gets about 3.6 MHz;  could get several times as much
+ *  using the bitbands directly  - jas.
+ */
+ 
+void WS2801::write(uint8_t byte) {
+    for (int i=0; i<8; i++) {
+        clk = 0;
+        wait_us(WS2801_DELAY);
+        dat = (byte & 0x80);
+        clk = 1;
+        wait_us(WS2801_DELAY);
+        byte <<= 1;
+    }
+    clk = 0;
+}
+
+void WS2801::begin(void) {
+    blank();
+    show();
+}
+
+uint16_t WS2801::numPixels(void) {
+    return numLEDs;
+}
+
+void WS2801::blank(void) {
+    memset(pixels, 0x00, numLEDs * 3);
+}
+
+// This is how data is pushed to the strip.  Unfortunately, the company
+// that makes the chip didnt release the  protocol document or you need
+// to sign an NDA or something stupid like that, but we reverse engineered
+// this from a strip controller and it seems to work very nicely!
+void WS2801::show(void) {
+    uint16_t i, nl3 = numLEDs * 3; // 3 bytes per LED
+    while (guardtime.read_us() < 500)
+        /* spin */;
+    for (i=0; i<nl3; i++ ) {
+        write(pixels[i]);
+    }
+
+    guardtime.reset();
+}
+
+
+uint32_t WS2801::total_luminance(void) {
+    uint32_t running_total;
+    running_total = 0;
+    for (int i=0; i<numLEDs*3; i++)
+        running_total += pixels[i];
+    return running_total;
+}
+
+// Convert R,G,B to combined 32-bit color
+uint32_t WS2801::Color(uint8_t r, uint8_t g, uint8_t b) {
+    // Take the lowest 7 bits of each value and append them end to end
+    // We have the top bit set high (its a 'parity-like' bit in the protocol
+    // and must be set!)
+    return ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b;
+}
+
+// store the rgb component in our array
+void WS2801::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
+    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
+
+    pixels[n*3  ] = g;
+    pixels[n*3+1] = r;
+    pixels[n*3+2] = b;
+}
+
+void WS2801::setPixelR(uint16_t n, uint8_t r) {
+    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
+
+    pixels[n*3+1] = r;
+}
+
+void WS2801::setPixelG(uint16_t n, uint8_t g) {
+    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
+
+    pixels[n*3] = g;
+}
+
+void WS2801::setPixelB(uint16_t n, uint8_t b) {
+    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
+
+    pixels[n*3+2] = b;
+}
+
+void WS2801::setPixelColor(uint16_t n, uint32_t c) {
+    if (n >= numLEDs) return; // '>=' because arrays are 0-indexed
+
+    pixels[n*3  ] = (c >> 16);
+    pixels[n*3+1] = (c >>  8);
+    pixels[n*3+2] =  c;
+}