FOC Implementation for putting multirotor motors in robots

Dependencies:   FastPWM3 mbed

Inverter/Inverter.cpp

Committer:
benkatz
Date:
2016-10-31
Revision:
14:80ce59119d93
Parent:
10:370851e6e132

File content as of revision 14:80ce59119d93:

#include "mbed.h"
#include "FastPWM.h"
#include "Inverter.h"

Inverter::Inverter(PinName PinA, PinName PinB, PinName PinC, PinName PinEnable, float I_Scale, float Period){
    
    _I_Scale = I_Scale;

    
    Enable = new DigitalOut(PinEnable);
    
    RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; // enable the clock to GPIOC
    //RCC->APB1ENR |= 0x00000001; // enable TIM2 clock
    RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; // enable TIM1 clock

    GPIOC->MODER = (1 << 8); // set pin 4 to be general purpose output

    PWM_A = new FastPWM(PinA);
    PWM_B = new FastPWM(PinB);
    PWM_C = new FastPWM(PinC);

    //TIM2->CR1 &= ~(TIM_CR1_CEN);
    //TIM2->CR1 |= TIM_CR1_CMS;
    //TIM2->CR1 |= TIM_CR1_CEN;

    //PWM_A->period(Period);
    
     //ISR Setup     
    NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn);   //Enable TIM1 IRQ

    TIM1->DIER |= TIM_DIER_UIE; // enable update interrupt
    TIM1->CR1 = 0x40;//CMS = 10, interrupt only when counting up
    TIM1->CR1 |= TIM_CR1_ARPE; // autoreload on, 
    TIM1->RCR |= 0x001; // update event once per up/down count of tim1 
    TIM1->EGR |= TIM_EGR_UG;
 
    //PWM Setup

    TIM1->PSC = 0x0; // no prescaler, timer counts up in sync with the peripheral clock
    //TIM1->ARR = 0x1194; // 20 Khz
    TIM1->ARR = 0x8CA;
    TIM1->CCER |= ~(TIM_CCER_CC1NP); //Interupt when low side is on.
    TIM1->CR1 |= TIM_CR1_CEN;     
    
    // ADC Setup
     RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; // clock for ADC2
     RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // clock for ADC1
     RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN;//0x0000002; // Enable clock for GPIOC
     
     ADC->CCR = 0x00000006; // Regular simultaneous mode only
     ADC1->CR2 |= ADC_CR2_ADON;//0x00000001; // ADC1 ON
     ADC1->SQR3 = 0x000000A; // use PC_0 as input
     ADC2->CR2 |= ADC_CR2_ADON;//0x00000001; // ADC1 ON
     ADC2->SQR3 = 0x0000000B; // use PC_1 as input
     GPIOC->MODER |= 0x0000000f; // PC_0, PC_1 are analog inputs 
     
    // DAC set-up
     RCC->APB1ENR |= 0x20000000; // Enable clock for DAC
     DAC->CR |= 0x00000001; // DAC control reg, both channels ON
     GPIOA->MODER |= 0x00000300; // PA04 as analog output   
     
     
     //Enabled pin must be on for current sensors to turn on
     EnableInverter();
     SetDTC(0.0f, 0.0f, 0.0f);
     wait(.2);
     ZeroCurrent();
     wait(.1);
     DisableInverter();
    }

void Inverter::SetDTC(float DTC_A, float DTC_B, float DTC_C){
        PWM_A->write(1.0f-DTC_A);
        PWM_B->write(1.0f-DTC_B);
        PWM_C->write(1.0f-DTC_C);
    }

void Inverter::EnableInverter(){
    Enable->write(1);
    }

void Inverter::DisableInverter(){
    Enable->write(0);
    }

void Inverter::ZeroCurrent(){
    I_B_Offset = 0;
    I_C_Offset = 0;
    for (int i=0; i < 1000; i++){
        I_B_Offset += ADC2->DR;
        I_C_Offset += ADC1->DR;
        ADC1->CR2  |= 0x40000000; 
        wait(.0001);
        }
    I_B_Offset = I_B_Offset/1000.0f;
    I_C_Offset = I_C_Offset/1000.0f;
    //printf("B_Offset:  %f     C_Offset:  %f\n\r", I_B_Offset, I_C_Offset);
    }

void Inverter::GetCurrent(float *A, float *B, float *C){
    *A = I_A;
    *B = I_B;
    *C = I_C;
    //printf("I_A: %f    I_B: %f   I_C: %f\n\r", I_A, I_B, I_C);
    }

void Inverter::SampleCurrent(void){
 //   Dbg->write(1);
    GPIOC->ODR ^= (1 << 4); //Toggle pin for debugging
    I_B = _I_Scale*((float) (ADC2->DR) -  I_B_Offset);
    I_C = _I_Scale*((float) (ADC1->DR)-  I_C_Offset);
    I_A = -I_B - I_C;
    //DAC->DHR12R1 = ADC2->DR; 
    //DAC->DHR12R1 = TIM3->CNT>>2;//ADC2->DR; // pass ADC -> DAC, also clears EOC flag
    ADC1->CR2  |= 0x40000000; 
    GPIOC->ODR ^= (1 << 4); //toggle pin for debugging
    }