I2C Library for the LSM9DS0 IMU
Dependents: 4180_LSM9DS0_lab HW2_P2 HW2_P3 HW2_P4 ... more
LSM9DS0.h
- Committer:
- aswild
- Date:
- 2015-01-26
- Revision:
- 0:3a1dce39106c
- Child:
- 1:7c1e26d377ed
File content as of revision 0:3a1dce39106c:
// Most of the Credit goes to jimblom
// Modifications by Allen Wild
#ifndef _LSM9DS0_H__
#define _LSM9DS0_H__
#include "mbed.h"
////////////////////////////
// LSM9DS0 Gyro Registers //
////////////////////////////
#define WHO_AM_I_G 0x0F
#define CTRL_REG1_G 0x20
#define CTRL_REG2_G 0x21
#define CTRL_REG3_G 0x22
#define CTRL_REG4_G 0x23
#define CTRL_REG5_G 0x24
#define REFERENCE_G 0x25
#define STATUS_REG_G 0x27
#define OUT_X_L_G 0x28
#define OUT_X_H_G 0x29
#define OUT_Y_L_G 0x2A
#define OUT_Y_H_G 0x2B
#define OUT_Z_L_G 0x2C
#define OUT_Z_H_G 0x2D
#define FIFO_CTRL_REG_G 0x2E
#define FIFO_SRC_REG_G 0x2F
#define INT1_CFG_G 0x30
#define INT1_SRC_G 0x31
#define INT1_THS_XH_G 0x32
#define INT1_THS_XL_G 0x33
#define INT1_THS_YH_G 0x34
#define INT1_THS_YL_G 0x35
#define INT1_THS_ZH_G 0x36
#define INT1_THS_ZL_G 0x37
#define INT1_DURATION_G 0x38
//////////////////////////////////////////
// LSM9DS0 Accel/Magneto (XM) Registers //
//////////////////////////////////////////
#define OUT_TEMP_L_XM 0x05
#define OUT_TEMP_H_XM 0x06
#define STATUS_REG_M 0x07
#define OUT_X_L_M 0x08
#define OUT_X_H_M 0x09
#define OUT_Y_L_M 0x0A
#define OUT_Y_H_M 0x0B
#define OUT_Z_L_M 0x0C
#define OUT_Z_H_M 0x0D
#define WHO_AM_I_XM 0x0F
#define INT_CTRL_REG_M 0x12
#define INT_SRC_REG_M 0x13
#define INT_THS_L_M 0x14
#define INT_THS_H_M 0x15
#define OFFSET_X_L_M 0x16
#define OFFSET_X_H_M 0x17
#define OFFSET_Y_L_M 0x18
#define OFFSET_Y_H_M 0x19
#define OFFSET_Z_L_M 0x1A
#define OFFSET_Z_H_M 0x1B
#define REFERENCE_X 0x1C
#define REFERENCE_Y 0x1D
#define REFERENCE_Z 0x1E
#define CTRL_REG0_XM 0x1F
#define CTRL_REG1_XM 0x20
#define CTRL_REG2_XM 0x21
#define CTRL_REG3_XM 0x22
#define CTRL_REG4_XM 0x23
#define CTRL_REG5_XM 0x24
#define CTRL_REG6_XM 0x25
#define CTRL_REG7_XM 0x26
#define STATUS_REG_A 0x27
#define OUT_X_L_A 0x28
#define OUT_X_H_A 0x29
#define OUT_Y_L_A 0x2A
#define OUT_Y_H_A 0x2B
#define OUT_Z_L_A 0x2C
#define OUT_Z_H_A 0x2D
#define FIFO_CTRL_REG 0x2E
#define FIFO_SRC_REG 0x2F
#define INT_GEN_1_REG 0x30
#define INT_GEN_1_SRC 0x31
#define INT_GEN_1_THS 0x32
#define INT_GEN_1_DURATION 0x33
#define INT_GEN_2_REG 0x34
#define INT_GEN_2_SRC 0x35
#define INT_GEN_2_THS 0x36
#define INT_GEN_2_DURATION 0x37
#define CLICK_CFG 0x38
#define CLICK_SRC 0x39
#define CLICK_THS 0x3A
#define TIME_LIMIT 0x3B
#define TIME_LATENCY 0x3C
#define TIME_WINDOW 0x3D
#define ACT_THS 0x3E
#define ACT_DUR 0x3F
class LSM9DS0
{
public:
/// gyro_scale defines the possible full-scale ranges of the gyroscope:
enum gyro_scale
{
G_SCALE_245DPS, // 00: +/- 245 degrees per second
G_SCALE_500DPS, // 01: +/- 500 dps
G_SCALE_2000DPS, // 10: +/- 2000 dps
};
/// accel_scale defines all possible FSR's of the accelerometer:
enum accel_scale
{
A_SCALE_2G, // 000: +/- 2g
A_SCALE_4G, // 001: +/- 4g
A_SCALE_6G, // 010: +/- 6g
A_SCALE_8G, // 011: +/- 8g
A_SCALE_16G // 100: +/- 16g
};
/// mag_scale defines all possible FSR's of the magnetometer:
enum mag_scale
{
M_SCALE_2GS, // 00: +/- 2Gs
M_SCALE_4GS, // 01: +/- 4Gs
M_SCALE_8GS, // 10: +/- 8Gs
M_SCALE_12GS, // 11: +/- 12Gs
};
/// gyro_odr defines all possible data rate/bandwidth combos of the gyro:
enum gyro_odr
{ // ODR (Hz) --- Cutoff
G_ODR_95_BW_125 = 0x0, // 95 12.5
G_ODR_95_BW_25 = 0x1, // 95 25
// 0x2 and 0x3 define the same data rate and bandwidth
G_ODR_190_BW_125 = 0x4, // 190 12.5
G_ODR_190_BW_25 = 0x5, // 190 25
G_ODR_190_BW_50 = 0x6, // 190 50
G_ODR_190_BW_70 = 0x7, // 190 70
G_ODR_380_BW_20 = 0x8, // 380 20
G_ODR_380_BW_25 = 0x9, // 380 25
G_ODR_380_BW_50 = 0xA, // 380 50
G_ODR_380_BW_100 = 0xB, // 380 100
G_ODR_760_BW_30 = 0xC, // 760 30
G_ODR_760_BW_35 = 0xD, // 760 35
G_ODR_760_BW_50 = 0xE, // 760 50
G_ODR_760_BW_100 = 0xF, // 760 100
};
/// accel_oder defines all possible output data rates of the accelerometer:
enum accel_odr
{
A_POWER_DOWN, // Power-down mode (0x0)
A_ODR_3125, // 3.125 Hz (0x1)
A_ODR_625, // 6.25 Hz (0x2)
A_ODR_125, // 12.5 Hz (0x3)
A_ODR_25, // 25 Hz (0x4)
A_ODR_50, // 50 Hz (0x5)
A_ODR_100, // 100 Hz (0x6)
A_ODR_200, // 200 Hz (0x7)
A_ODR_400, // 400 Hz (0x8)
A_ODR_800, // 800 Hz (9)
A_ODR_1600 // 1600 Hz (0xA)
};
/// accel_oder defines all possible output data rates of the magnetometer:
enum mag_odr
{
M_ODR_3125, // 3.125 Hz (0x00)
M_ODR_625, // 6.25 Hz (0x01)
M_ODR_125, // 12.5 Hz (0x02)
M_ODR_25, // 25 Hz (0x03)
M_ODR_50, // 50 (0x04)
M_ODR_100, // 100 Hz (0x05)
};
// We'll store the gyro, accel, and magnetometer readings in a series of
// public class variables. Each sensor gets three variables -- one for each
// axis. Call readGyro(), readAccel(), and readMag() first, before using
// these variables!
// These values are the RAW signed 16-bit readings from the sensors.
int16_t gx_raw, gy_raw, gz_raw; // x, y, and z axis readings of the gyroscope
int16_t ax_raw, ay_raw, az_raw; // x, y, and z axis readings of the accelerometer
int16_t mx_raw, my_raw, mz_raw; // x, y, and z axis readings of the magnetometer
int16_t temperature_raw;
// floating-point values of scaled data in real-world units
float gx, gy, gz;
float ax, ay, az;
float mx, my, mz;
float temperature_c, temperature_f; // temperature in celcius and fahrenheit
float abias[3];
float gbias[3];
/** LSM9DS0 -- LSM9DS0 class constructor
* The constructor will set up a handful of private variables, and set the
* communication mode as well.
* Input:
* - interface = Either MODE_SPI or MODE_I2C, whichever you're using
* to talk to the IC.
* - gAddr = If MODE_I2C, this is the I2C address of the gyroscope.
* If MODE_SPI, this is the chip select pin of the gyro (CSG)
* - xmAddr = If MODE_I2C, this is the I2C address of the accel/mag.
* If MODE_SPI, this is the cs pin of the accel/mag (CSXM)
*/
LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr);
/** begin() -- Initialize the gyro, accelerometer, and magnetometer.
* This will set up the scale and output rate of each sensor. It'll also
* "turn on" every sensor and every axis of every sensor.
* Input:
* - gScl = The scale of the gyroscope. This should be a gyro_scale value.
* - aScl = The scale of the accelerometer. Should be a accel_scale value.
* - mScl = The scale of the magnetometer. Should be a mag_scale value.
* - gODR = Output data rate of the gyroscope. gyro_odr value.
* - aODR = Output data rate of the accelerometer. accel_odr value.
* - mODR = Output data rate of the magnetometer. mag_odr value.
* Output: The function will return an unsigned 16-bit value. The most-sig
* bytes of the output are the WHO_AM_I reading of the accel. The
* least significant two bytes are the WHO_AM_I reading of the gyro.
* All parameters have a defaulted value, so you can call just "begin()".
* Default values are FSR's of: +/- 245DPS, 2g, 2Gs; ODRs of 95 Hz for
* gyro, 100 Hz for accelerometer, 100 Hz for magnetometer.
* Use the return value of this function to verify communication.
*/
uint16_t begin(gyro_scale gScl = G_SCALE_245DPS,
accel_scale aScl = A_SCALE_2G, mag_scale mScl = M_SCALE_2GS,
gyro_odr gODR = G_ODR_95_BW_125, accel_odr aODR = A_ODR_50,
mag_odr mODR = M_ODR_50);
/** readGyro() -- Read the gyroscope output registers.
* This function will read all six gyroscope output registers.
* The readings are stored in the class' gx_raw, gy_raw, and gz_raw variables. Read
* those _after_ calling readGyro().
*/
void readGyro();
/** readAccel() -- Read the accelerometer output registers.
* This function will read all six accelerometer output registers.
* The readings are stored in the class' ax_raw, ay_raw, and az_raw variables. Read
* those _after_ calling readAccel().
*/
void readAccel();
/** readMag() -- Read the magnetometer output registers.
* This function will read all six magnetometer output registers.
* The readings are stored in the class' mx_raw, my_raw, and mz_raw variables. Read
* those _after_ calling readMag().
*/
void readMag();
/** readTemp() -- Read the temperature output register.
* This function will read two temperature output registers.
* The combined readings are stored in the class' temperature variables. Read
* those _after_ calling readTemp().
*/
void readTemp();
/** setGyroScale() -- Set the full-scale range of the gyroscope.
* This function can be called to set the scale of the gyroscope to
* 245, 500, or 200 degrees per second.
* Input:
* - gScl = The desired gyroscope scale. Must be one of three possible
* values from the gyro_scale enum.
*/
void setGyroScale(gyro_scale gScl);
/** setAccelScale() -- Set the full-scale range of the accelerometer.
* This function can be called to set the scale of the accelerometer to
* 2, 4, 6, 8, or 16 g's.
* Input:
* - aScl = The desired accelerometer scale. Must be one of five possible
* values from the accel_scale enum.
*/
void setAccelScale(accel_scale aScl);
/** setMagScale() -- Set the full-scale range of the magnetometer.
* This function can be called to set the scale of the magnetometer to
* 2, 4, 8, or 12 Gs.
* Input:
* - mScl = The desired magnetometer scale. Must be one of four possible
* values from the mag_scale enum.
*/
void setMagScale(mag_scale mScl);
/** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope
* Input:
* - gRate = The desired output rate and cutoff frequency of the gyro.
* Must be a value from the gyro_odr enum (check above, there're 14).
*/
void setGyroODR(gyro_odr gRate);
/** setAccelODR() -- Set the output data rate of the accelerometer
* Input:
* - aRate = The desired output rate of the accel.
* Must be a value from the accel_odr enum (check above, there're 11).
*/
void setAccelODR(accel_odr aRate);
/** setMagODR() -- Set the output data rate of the magnetometer
* Input:
* - mRate = The desired output rate of the mag.
* Must be a value from the mag_odr enum (check above, there're 6).
*/
void setMagODR(mag_odr mRate);
/** configGyroInt() -- Configure the gyro interrupt output.
* Triggers can be set to either rising above or falling below a specified
* threshold. This function helps setup the interrupt configuration and
* threshold values for all axes.
* Input:
* - int1Cfg = A 8-bit value that is sent directly to the INT1_CFG_G
* register. This sets AND/OR and high/low interrupt gen for each axis
* - int1ThsX = 16-bit interrupt threshold value for x-axis
* - int1ThsY = 16-bit interrupt threshold value for y-axis
* - int1ThsZ = 16-bit interrupt threshold value for z-axis
* - duration = Duration an interrupt holds after triggered. This value
* is copied directly into the INT1_DURATION_G register.
* Before using this function, read about the INT1_CFG_G register and
* the related INT1* registers in the LMS9DS0 datasheet.
*/
void configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX = 0,
uint16_t int1ThsY = 0, uint16_t int1ThsZ = 0,
uint8_t duration = 0);
void calcBias();
* return a comass heading (in degrees) using X/Y magnetometer data
float calcHeading();
private:
/** xmAddress and gAddress store the I2C address
* for each sensor.
*/
uint8_t xmAddress, gAddress;
/** gScale, aScale, and mScale store the current scale range for each
* sensor. Should be updated whenever that value changes.
*/
gyro_scale gScale;
accel_scale aScale;
mag_scale mScale;
/** gRes, aRes, and mRes store the current resolution for each sensor.
* Units of these values would be DPS (or g's or Gs's) per ADC tick.
* This value is calculated as (sensor scale) / (2^15).
*/
float gRes, aRes, mRes;
/** initGyro() -- Sets up the gyroscope to begin reading.
* This function steps through all five gyroscope control registers.
* Upon exit, the following parameters will be set:
* - CTRL_REG1_G = 0x0F: Normal operation mode, all axes enabled.
* 95 Hz ODR, 12.5 Hz cutoff frequency.
* - CTRL_REG2_G = 0x00: HPF set to normal mode, cutoff frequency
* set to 7.2 Hz (depends on ODR).
* - CTRL_REG3_G = 0x88: Interrupt enabled on INT_G (set to push-pull and
* active high). Data-ready output enabled on DRDY_G.
* - CTRL_REG4_G = 0x00: Continuous update mode. Data LSB stored in lower
* address. Scale set to 245 DPS. SPI mode set to 4-wire.
* - CTRL_REG5_G = 0x00: FIFO disabled. HPF disabled.
*/
void initGyro();
/** initAccel() -- Sets up the accelerometer to begin reading.
* This function steps through all accelerometer related control registers.
* Upon exit these registers will be set as:
* - CTRL_REG0_XM = 0x00: FIFO disabled. HPF bypassed. Normal mode.
* - CTRL_REG1_XM = 0x57: 100 Hz data rate. Continuous update.
* all axes enabled.
* - CTRL_REG2_XM = 0x00: +/- 2g scale. 773 Hz anti-alias filter BW.
* - CTRL_REG3_XM = 0x04: Accel data ready signal on INT1_XM pin.
*/
void initAccel();
/** initMag() -- Sets up the magnetometer to begin reading.
* This function steps through all magnetometer-related control registers.
* Upon exit these registers will be set as:
* - CTRL_REG4_XM = 0x04: Mag data ready signal on INT2_XM pin.
* - CTRL_REG5_XM = 0x14: 100 Hz update rate. Low resolution. Interrupt
* requests don't latch. Temperature sensor disabled.
* - CTRL_REG6_XM = 0x00: +/- 2 Gs scale.
* - CTRL_REG7_XM = 0x00: Continuous conversion mode. Normal HPF mode.
* - INT_CTRL_REG_M = 0x09: Interrupt active-high. Enable interrupts.
*/
void initMag();
/** gReadByte() -- Reads a byte from a specified gyroscope register.
* Input:
* - subAddress = Register to be read from.
* Output:
* - An 8-bit value read from the requested address.
*/
uint8_t gReadByte(uint8_t subAddress);
/** gWriteByte() -- Write a byte to a register in the gyroscope.
* Input:
* - subAddress = Register to be written to.
* - data = data to be written to the register.
*/
void gWriteByte(uint8_t subAddress, uint8_t data);
/** xmReadByte() -- Read a byte from a register in the accel/mag sensor
* Input:
* - subAddress = Register to be read from.
* Output:
* - An 8-bit value read from the requested register.
*/
uint8_t xmReadByte(uint8_t subAddress);
/** xmWriteByte() -- Write a byte to a register in the accel/mag sensor.
* Input:
* - subAddress = Register to be written to.
* - data = data to be written to the register.
*/
void xmWriteByte(uint8_t subAddress, uint8_t data);
/** calcgRes() -- Calculate the resolution of the gyroscope.
* This function will set the value of the gRes variable. gScale must
* be set prior to calling this function.
*/
void calcgRes();
/** calcmRes() -- Calculate the resolution of the magnetometer.
* This function will set the value of the mRes variable. mScale must
* be set prior to calling this function.
*/
void calcmRes();
/** calcaRes() -- Calculate the resolution of the accelerometer.
* This function will set the value of the aRes variable. aScale must
* be set prior to calling this function.
*/
void calcaRes();
///////////////////
// I2C Functions //
///////////////////
I2C i2c;
/** I2CwriteByte() -- Write a byte out of I2C to a register in the device
* Input:
* - address = The 7-bit I2C address of the slave device.
* - subAddress = The register to be written to.
* - data = Byte to be written to the register.
*/
void I2CwriteByte(char address, char subAddress, char data);
/** I2CreadByte() -- Read a single byte from a register over I2C.
* Input:
* - address = The 7-bit I2C address of the slave device.
* - subAddress = The register to be read from.
* Output:
* - The byte read from the requested address.
*/
uint8_t I2CreadByte(char address, char subAddress);
};
#endif // _LSM9DS0_H //