I2C Library for the LSM9DS0 IMU
Dependents: 4180_LSM9DS0_lab HW2_P2 HW2_P3 HW2_P4 ... more
Diff: LSM9DS0.cpp
- Revision:
- 0:3a1dce39106c
- Child:
- 2:5556e6fb99f5
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/LSM9DS0.cpp Mon Jan 26 06:34:53 2015 +0000
@@ -0,0 +1,450 @@
+#include "LSM9DS0.h"
+#include "math.h"
+
+LSM9DS0::LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr) : i2c(sda, scl)
+{
+ // xmAddress and gAddress will store the 7-bit I2C address, if using I2C.
+ xmAddress = xmAddr;
+ gAddress = gAddr;
+}
+
+uint16_t LSM9DS0::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl,
+ gyro_odr gODR, accel_odr aODR, mag_odr mODR)
+{
+ // Store the given scales in class variables. These scale variables
+ // are used throughout to calculate the actual g's, DPS,and Gs's.
+ gScale = gScl;
+ aScale = aScl;
+ mScale = mScl;
+
+ // Once we have the scale values, we can calculate the resolution
+ // of each sensor. That's what these functions are for. One for each sensor
+ calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
+ calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
+ calcaRes(); // Calculate g / ADC tick, stored in aRes variable
+
+
+ // To verify communication, we can read from the WHO_AM_I register of
+ // each device. Store those in a variable so we can return them.
+ uint8_t gTest = gReadByte(WHO_AM_I_G); // Read the gyro WHO_AM_I
+ uint8_t xmTest = xmReadByte(WHO_AM_I_XM); // Read the accel/mag WHO_AM_I
+
+ // Gyro initialization stuff:
+ initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
+ setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
+ setGyroScale(gScale); // Set the gyro range
+
+ // Accelerometer initialization stuff:
+ initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
+ setAccelODR(aODR); // Set the accel data rate.
+ setAccelScale(aScale); // Set the accel range.
+
+ // Magnetometer initialization stuff:
+ initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
+ setMagODR(mODR); // Set the magnetometer output data rate.
+ setMagScale(mScale); // Set the magnetometer's range.
+
+ // Once everything is initialized, return the WHO_AM_I registers we read:
+ return (xmTest << 8) | gTest;
+}
+
+void LSM9DS0::initGyro()
+{
+
+ gWriteByte(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes
+ gWriteByte(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency
+ gWriteByte(CTRL_REG3_G, 0x88); //Interrupt enabled on both INT_G and I2_DRDY
+ gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps
+ gWriteByte(CTRL_REG5_G, 0x00); //Init default values
+
+}
+
+void LSM9DS0::initAccel()
+{
+ xmWriteByte(CTRL_REG0_XM, 0x00);
+ xmWriteByte(CTRL_REG1_XM, 0x57); // 50Hz data rate, x/y/z all enabled
+ xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g
+ xmWriteByte(CTRL_REG3_XM, 0x04); // Accelerometer data ready on INT1_XM (0x04)
+
+}
+
+void LSM9DS0::initMag()
+{
+ xmWriteByte(CTRL_REG5_XM, 0x94); // Mag data rate - 100 Hz, enable temperature sensor
+ xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS
+ xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode
+ xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08)
+ xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull
+}
+
+void LSM9DS0::readAccel()
+{
+ uint16_t data = 0;
+
+ //Get x
+ data = xmReadByte(OUT_X_H_A);
+ data <<= 8;
+ data |= xmReadByte(OUT_X_L_A);
+ ax_raw = data;
+ ax = ax_raw * aRes;
+
+ //Get y
+ data=0;
+ data = xmReadByte(OUT_Y_H_A);
+ data <<= 8;
+ data |= xmReadByte(OUT_Y_L_A);
+ ay_raw = data;
+ ay = ay_raw * aRes;
+
+ //Get z
+ data=0;
+ data = xmReadByte(OUT_Z_H_A);
+ data <<= 8;
+ data |= xmReadByte(OUT_Z_L_A);
+ az_raw = data;
+ az = az_raw * aRes;
+}
+
+void LSM9DS0::readMag()
+{
+ uint16_t data = 0;
+
+ //Get x
+ data = xmReadByte(OUT_X_H_M);
+ data <<= 8;
+ data |= xmReadByte(OUT_X_L_M);
+ mx_raw = data;
+ mx = mx_raw * mRes;
+
+ //Get y
+ data = xmReadByte(OUT_Y_H_M);
+ data <<= 8;
+ data |= xmReadByte(OUT_Y_L_M);
+ my_raw = data;
+ my = my_raw * mRes;
+
+ //Get z
+ data = xmReadByte(OUT_Z_H_M);
+ data <<= 8;
+ data |= xmReadByte(OUT_Z_L_M);
+ mz_raw = data;
+ mz = mz_raw * mRes;
+}
+
+void LSM9DS0::readTemp()
+{
+ uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
+
+ temp[0] = xmReadByte(OUT_TEMP_L_XM);
+ temp[1] = xmReadByte(OUT_TEMP_H_XM);
+
+ // Temperature is a 12-bit signed integer
+ temperature_raw = (((int16_t) temp[1] << 12) | temp[0] << 4 ) >> 4;
+
+ temperature_c = (float)temperature_raw / 8.0;
+ temperature_f = temperature_c * 1.8 + 32;
+}
+
+
+void LSM9DS0::readGyro()
+{
+ uint16_t data = 0;
+
+ //Get x
+ data = gReadByte(OUT_X_H_G);
+ data <<= 8;
+ data |= gReadByte(OUT_X_L_G);
+ gx_raw = data;
+ gx = gx_raw * gRes;
+
+ //Get y
+ data = gReadByte(OUT_Y_H_G);
+ data <<= 8;
+ data |= gReadByte(OUT_Y_L_G);
+ gy_raw = data;
+ gy = gy_raw * gRes;
+
+ //Get z
+ data = gReadByte(OUT_Z_H_G);
+ data <<= 8;
+ data |= gReadByte(OUT_Z_L_G);
+ gz_raw = data;
+ gz = gz_raw * gRes;
+}
+
+void LSM9DS0::setGyroScale(gyro_scale gScl)
+{
+ // We need to preserve the other bytes in CTRL_REG4_G. So, first read it:
+ uint8_t temp = gReadByte(CTRL_REG4_G);
+ // Then mask out the gyro scale bits:
+ temp &= 0xFF^(0x3 << 4);
+ // Then shift in our new scale bits:
+ temp |= gScl << 4;
+ // And write the new register value back into CTRL_REG4_G:
+ gWriteByte(CTRL_REG4_G, temp);
+
+ // We've updated the sensor, but we also need to update our class variables
+ // First update gScale:
+ gScale = gScl;
+ // Then calculate a new gRes, which relies on gScale being set correctly:
+ calcgRes();
+}
+
+void LSM9DS0::setAccelScale(accel_scale aScl)
+{
+ // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it:
+ uint8_t temp = xmReadByte(CTRL_REG2_XM);
+ // Then mask out the accel scale bits:
+ temp &= 0xFF^(0x3 << 3);
+ // Then shift in our new scale bits:
+ temp |= aScl << 3;
+ // And write the new register value back into CTRL_REG2_XM:
+ xmWriteByte(CTRL_REG2_XM, temp);
+
+ // We've updated the sensor, but we also need to update our class variables
+ // First update aScale:
+ aScale = aScl;
+ // Then calculate a new aRes, which relies on aScale being set correctly:
+ calcaRes();
+}
+
+void LSM9DS0::setMagScale(mag_scale mScl)
+{
+ // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
+ uint8_t temp = xmReadByte(CTRL_REG6_XM);
+ // Then mask out the mag scale bits:
+ temp &= 0xFF^(0x3 << 5);
+ // Then shift in our new scale bits:
+ temp |= mScl << 5;
+ // And write the new register value back into CTRL_REG6_XM:
+ xmWriteByte(CTRL_REG6_XM, temp);
+
+ // We've updated the sensor, but we also need to update our class variables
+ // First update mScale:
+ mScale = mScl;
+ // Then calculate a new mRes, which relies on mScale being set correctly:
+ calcmRes();
+}
+
+void LSM9DS0::setGyroODR(gyro_odr gRate)
+{
+ // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
+ uint8_t temp = gReadByte(CTRL_REG1_G);
+ // Then mask out the gyro ODR bits:
+ temp &= 0xFF^(0xF << 4);
+ // Then shift in our new ODR bits:
+ temp |= (gRate << 4);
+ // And write the new register value back into CTRL_REG1_G:
+ gWriteByte(CTRL_REG1_G, temp);
+}
+void LSM9DS0::setAccelODR(accel_odr aRate)
+{
+ // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
+ uint8_t temp = xmReadByte(CTRL_REG1_XM);
+ // Then mask out the accel ODR bits:
+ temp &= 0xFF^(0xF << 4);
+ // Then shift in our new ODR bits:
+ temp |= (aRate << 4);
+ // And write the new register value back into CTRL_REG1_XM:
+ xmWriteByte(CTRL_REG1_XM, temp);
+}
+void LSM9DS0::setMagODR(mag_odr mRate)
+{
+ // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
+ uint8_t temp = xmReadByte(CTRL_REG5_XM);
+ // Then mask out the mag ODR bits:
+ temp &= 0xFF^(0x7 << 2);
+ // Then shift in our new ODR bits:
+ temp |= (mRate << 2);
+ // And write the new register value back into CTRL_REG5_XM:
+ xmWriteByte(CTRL_REG5_XM, temp);
+}
+
+void LSM9DS0::configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX, uint16_t int1ThsY, uint16_t int1ThsZ, uint8_t duration)
+{
+ gWriteByte(INT1_CFG_G, int1Cfg);
+ gWriteByte(INT1_THS_XH_G, (int1ThsX & 0xFF00) >> 8);
+ gWriteByte(INT1_THS_XL_G, (int1ThsX & 0xFF));
+ gWriteByte(INT1_THS_YH_G, (int1ThsY & 0xFF00) >> 8);
+ gWriteByte(INT1_THS_YL_G, (int1ThsY & 0xFF));
+ gWriteByte(INT1_THS_ZH_G, (int1ThsZ & 0xFF00) >> 8);
+ gWriteByte(INT1_THS_ZL_G, (int1ThsZ & 0xFF));
+ if (duration)
+ gWriteByte(INT1_DURATION_G, 0x80 | duration);
+ else
+ gWriteByte(INT1_DURATION_G, 0x00);
+}
+
+void LSM9DS0::calcgRes()
+{
+ // Possible gyro scales (and their register bit settings) are:
+ // 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm
+ // to calculate DPS/(ADC tick) based on that 2-bit value:
+ switch (gScale)
+ {
+ case G_SCALE_245DPS:
+ gRes = 245.0 / 32768.0;
+ break;
+ case G_SCALE_500DPS:
+ gRes = 500.0 / 32768.0;
+ break;
+ case G_SCALE_2000DPS:
+ gRes = 2000.0 / 32768.0;
+ break;
+ }
+}
+
+void LSM9DS0::calcaRes()
+{
+ // Possible accelerometer scales (and their register bit settings) are:
+ // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an
+ // algorithm to calculate g/(ADC tick) based on that 3-bit value:
+ aRes = aScale == A_SCALE_16G ? 16.0 / 32768.0 :
+ (((float) aScale + 1.0) * 2.0) / 32768.0;
+}
+
+void LSM9DS0::calcmRes()
+{
+ // Possible magnetometer scales (and their register bit settings) are:
+ // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm
+ // to calculate Gs/(ADC tick) based on that 2-bit value:
+ mRes = mScale == M_SCALE_2GS ? 2.0 / 32768.0 :
+ (float) (mScale << 2) / 32768.0;
+}
+
+#define R2D 57.295779513F
+// calculate compass heading, assuming readMag() has been called already
+float LSM9DS0::calcHeading()
+{
+ if (my > 0)
+ return 90.0 - atan(mx / my)*R2D;
+ else if (my < 0)
+ return 270.0 - atan(mx / my)*R2D;
+ else if (mx < 0)
+ return 180.0;
+ else
+ return 0.0;
+}
+
+void LSM9DS0::calcBias()
+{
+ uint8_t data[6] = {0, 0, 0, 0, 0, 0};
+ int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+ int samples, ii;
+
+ // First get gyro bias
+ uint8_t c = gReadByte(CTRL_REG5_G);
+ gWriteByte(CTRL_REG5_G, c | 0x40); // Enable gyro FIFO
+ wait_ms(20); // Wait for change to take effect
+ gWriteByte(FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples
+ wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples
+
+ samples = (gReadByte(FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples
+
+ for(ii = 0; ii < samples ; ii++)
+ {
+ // Read the gyro data stored in the FIFO
+ data[0] = gReadByte(OUT_X_L_G);
+ data[1] = gReadByte(OUT_X_H_G);
+ data[2] = gReadByte(OUT_Y_L_G);
+ data[3] = gReadByte(OUT_Y_H_G);
+ data[4] = gReadByte(OUT_Z_L_G);
+ data[5] = gReadByte(OUT_Z_H_G);
+
+ gyro_bias[0] += (((int16_t)data[1] << 8) | data[0]);
+ gyro_bias[1] += (((int16_t)data[3] << 8) | data[2]);
+ gyro_bias[2] += (((int16_t)data[5] << 8) | data[4]);
+ }
+
+ gyro_bias[0] /= samples; // average the data
+ gyro_bias[1] /= samples;
+ gyro_bias[2] /= samples;
+
+ gbias[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s
+ gbias[1] = (float)gyro_bias[1]*gRes;
+ gbias[2] = (float)gyro_bias[2]*gRes;
+
+ c = gReadByte(CTRL_REG5_G);
+ gWriteByte(CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO
+ wait_ms(20);
+ gWriteByte(FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode
+
+ // Now get the accelerometer biases
+ c = xmReadByte(CTRL_REG0_XM);
+ xmWriteByte(CTRL_REG0_XM, c | 0x40); // Enable accelerometer FIFO
+ wait_ms(20); // Wait for change to take effect
+ xmWriteByte(FIFO_CTRL_REG, 0x20 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples
+ wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples
+
+ samples = (xmReadByte(FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples
+
+ for(ii = 0; ii < samples ; ii++)
+ {
+ // Read the accelerometer data stored in the FIFO
+ data[0] = xmReadByte(OUT_X_L_A);
+ data[1] = xmReadByte(OUT_X_H_A);
+ data[2] = xmReadByte(OUT_Y_L_A);
+ data[3] = xmReadByte(OUT_Y_H_A);
+ data[4] = xmReadByte(OUT_Z_L_A);
+ data[5] = xmReadByte(OUT_Z_H_A);
+ accel_bias[0] += (((int16_t)data[1] << 8) | data[0]);
+ accel_bias[1] += (((int16_t)data[3] << 8) | data[2]);
+ accel_bias[2] += (((int16_t)data[5] << 8) | data[4]) - (int16_t)(1./aRes); // Assumes sensor facing up!
+ }
+
+ accel_bias[0] /= samples; // average the data
+ accel_bias[1] /= samples;
+ accel_bias[2] /= samples;
+
+ abias[0] = (float)accel_bias[0]*aRes; // Properly scale data to get gs
+ abias[1] = (float)accel_bias[1]*aRes;
+ abias[2] = (float)accel_bias[2]*aRes;
+
+ c = xmReadByte(CTRL_REG0_XM);
+ xmWriteByte(CTRL_REG0_XM, c & ~0x40); // Disable accelerometer FIFO
+ wait_ms(20);
+ xmWriteByte(FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode
+}
+
+void LSM9DS0::gWriteByte(uint8_t subAddress, uint8_t data)
+{
+ // Whether we're using I2C or SPI, write a byte using the
+ // gyro-specific I2C address or SPI CS pin.
+ I2CwriteByte(gAddress, subAddress, data);
+}
+
+void LSM9DS0::xmWriteByte(uint8_t subAddress, uint8_t data)
+{
+ // Whether we're using I2C or SPI, write a byte using the
+ // accelerometer-specific I2C address or SPI CS pin.
+ return I2CwriteByte(xmAddress, subAddress, data);
+}
+
+uint8_t LSM9DS0::gReadByte(uint8_t subAddress)
+{
+ return I2CreadByte(gAddress, subAddress);
+}
+
+uint8_t LSM9DS0::xmReadByte(uint8_t subAddress)
+{
+ // Whether we're using I2C or SPI, read a byte using the
+ // accelerometer-specific I2C address.
+ return I2CreadByte(xmAddress, subAddress);
+}
+
+void LSM9DS0::I2CwriteByte(char address, char subAddress, char data)
+{
+ char cmd[2] = {subAddress, data};
+ i2c.write(address<<1, cmd, 2);
+
+}
+
+uint8_t LSM9DS0::I2CreadByte(char address, char subAddress)
+{
+ char data; // store the register data
+ i2c.write(address<<1, &subAddress, 1, true);
+ i2c.read(address<<1, &data, 1);
+
+ return data;
+
+}
\ No newline at end of file