IMU LSM9DS1 Library
Fork of LSM9DS1_Library by
Revision 5:58710c38076c, committed 2016-07-26
- Comitter:
- afmiee
- Date:
- Tue Jul 26 21:16:58 2016 +0000
- Parent:
- 4:e1404cbaf2a9
- Commit message:
- Made corrections to library.
Changed in this revision
| LSM9DS1.cpp | Show annotated file Show diff for this revision Revisions of this file |
| LSM9DS1.h | Show annotated file Show diff for this revision Revisions of this file |
--- a/LSM9DS1.cpp Wed Jul 20 21:38:08 2016 +0000
+++ b/LSM9DS1.cpp Tue Jul 26 21:16:58 2016 +0000
@@ -91,7 +91,7 @@
// 2 = 50 Hz 5 = 476 Hz
// 3 = 119 Hz 6 = 952 Hz
settings.accel.sampleRate = 1;
- // Accel cutoff freqeuncy can be any value between -1 - 3.
+ // Accel cutoff freqeuncy can be any value between -1 - 3.
// -1 = bandwidth determined by sample rate
// 0 = 408 Hz 2 = 105 Hz
// 1 = 211 Hz 3 = 50 Hz
@@ -126,8 +126,7 @@
settings.mag.operatingMode = 0;
settings.temp.enabled = true;
- for (int i=0; i<3; i++)
- {
+ for (int i=0; i<3; i++) {
gBias[i] = 0;
aBias[i] = 0;
mBias[i] = 0;
@@ -144,36 +143,36 @@
//! Todo: don't use _xgAddress or _mAddress, duplicating memory
_xgAddress = settings.device.agAddress;
_mAddress = settings.device.mAddress;
-
+
constrainScales();
// Once we have the scale values, we can calculate the resolution
// of each sensor. That's what these functions are for. One for each sensor
calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
calcaRes(); // Calculate g / ADC tick, stored in aRes variable
-
+
// Now, initialize our hardware interface.
if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
initI2C(); // Initialize I2C
else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
initSPI(); // Initialize SPI
-
+
// To verify communication, we can read from the WHO_AM_I register of
// each device. Store those in a variable so we can return them.
uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
debug.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
uint16_t whoAmICombined = (xgTest << 8) | mTest;
-
+
if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
return 0;
-
+
// Gyro initialization stuff:
initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
-
+
// Accelerometer initialization stuff:
initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
-
+
// Magnetometer initialization stuff:
initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
@@ -184,50 +183,47 @@
void LSM9DS1::initGyro()
{
uint8_t tempRegValue = 0;
-
+
// CTRL_REG1_G (Default value: 0x00)
// [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
// ODR_G[2:0] - Output data rate selection
// FS_G[1:0] - Gyroscope full-scale selection
// BW_G[1:0] - Gyroscope bandwidth selection
-
+
// To disable gyro, set sample rate bits to 0. We'll only set sample
// rate if the gyro is enabled.
- if (settings.gyro.enabled)
- {
+ if (settings.gyro.enabled) {
tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
}
- switch (settings.gyro.scale)
- {
+ switch (settings.gyro.scale) {
case 500:
tempRegValue |= (0x1 << 3);
break;
case 2000:
tempRegValue |= (0x3 << 3);
break;
- // Otherwise we'll set it to 245 dps (0x0 << 4)
+ // Otherwise we'll set it to 245 dps (0x0 << 4)
}
tempRegValue |= (settings.gyro.bandwidth & 0x3);
xgWriteByte(CTRL_REG1_G, tempRegValue);
-
+
// CTRL_REG2_G (Default value: 0x00)
// [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
// INT_SEL[1:0] - INT selection configuration
// OUT_SEL[1:0] - Out selection configuration
- xgWriteByte(CTRL_REG2_G, 0x00);
-
+ xgWriteByte(CTRL_REG2_G, 0x00);
+
// CTRL_REG3_G (Default value: 0x00)
// [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
// LP_mode - Low-power mode enable (0: disabled, 1: enabled)
// HP_EN - HPF enable (0:disabled, 1: enabled)
// HPCF_G[3:0] - HPF cutoff frequency
tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
- if (settings.gyro.HPFEnable)
- {
+ if (settings.gyro.HPFEnable) {
tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
}
xgWriteByte(CTRL_REG3_G, tempRegValue);
-
+
// CTRL_REG4 (Default value: 0x38)
// [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
// Zen_G - Z-axis output enable (0:disable, 1:enable)
@@ -241,7 +237,7 @@
if (settings.gyro.enableX) tempRegValue |= (1<<3);
if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
xgWriteByte(CTRL_REG4, tempRegValue);
-
+
// ORIENT_CFG_G (Default value: 0x00)
// [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
// SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
@@ -256,7 +252,7 @@
void LSM9DS1::initAccel()
{
uint8_t tempRegValue = 0;
-
+
// CTRL_REG5_XL (0x1F) (Default value: 0x38)
// [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
// DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
@@ -267,9 +263,9 @@
if (settings.accel.enableZ) tempRegValue |= (1<<5);
if (settings.accel.enableY) tempRegValue |= (1<<4);
if (settings.accel.enableX) tempRegValue |= (1<<3);
-
+
xgWriteByte(CTRL_REG5_XL, tempRegValue);
-
+
// CTRL_REG6_XL (0x20) (Default value: 0x00)
// [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
// ODR_XL[2:0] - Output data rate & power mode selection
@@ -278,12 +274,10 @@
// BW_XL[1:0] - Anti-aliasing filter bandwidth selection
tempRegValue = 0;
// To disable the accel, set the sampleRate bits to 0.
- if (settings.accel.enabled)
- {
+ if (settings.accel.enabled) {
tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
}
- switch (settings.accel.scale)
- {
+ switch (settings.accel.scale) {
case 4:
tempRegValue |= (0x2 << 3);
break;
@@ -293,15 +287,14 @@
case 16:
tempRegValue |= (0x1 << 3);
break;
- // Otherwise it'll be set to 2g (0x0 << 3)
+ // Otherwise it'll be set to 2g (0x0 << 3)
}
- if (settings.accel.bandwidth >= 0)
- {
+ if (settings.accel.bandwidth >= 0) {
tempRegValue |= (1<<2); // Set BW_SCAL_ODR
tempRegValue |= (settings.accel.bandwidth & 0x03);
}
xgWriteByte(CTRL_REG6_XL, tempRegValue);
-
+
// CTRL_REG7_XL (0x21) (Default value: 0x00)
// [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
// HR - High resolution mode (0: disable, 1: enable)
@@ -309,8 +302,7 @@
// FDS - Filtered data selection
// HPIS1 - HPF enabled for interrupt function
tempRegValue = 0;
- if (settings.accel.highResEnable)
- {
+ if (settings.accel.highResEnable) {
tempRegValue |= (1<<7); // Set HR bit
tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
}
@@ -325,22 +317,21 @@
// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
// is good practice.
void LSM9DS1::calibrate(bool autoCalc)
-{
+{
//uint8_t data[6] = {0, 0, 0, 0, 0, 0};
uint8_t samples = 0;
int ii;
int32_t aBiasRawTemp[3] = {0, 0, 0};
int32_t gBiasRawTemp[3] = {0, 0, 0};
-
+
// Turn on FIFO and set threshold to 32 samples
enableFIFO(true);
setFIFO(FIFO_THS, 0x1F);
- while (samples < 0x1F)
- {
+ while (samples < 0x1F) {
samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
}
- for(ii = 0; ii < samples ; ii++)
- { // Read the gyro data stored in the FIFO
+ for(ii = 0; ii < samples ; ii++) {
+ // Read the gyro data stored in the FIFO
readGyro();
gBiasRawTemp[0] += gx;
gBiasRawTemp[1] += gy;
@@ -348,19 +339,18 @@
readAccel();
aBiasRawTemp[0] += ax;
aBiasRawTemp[1] += ay;
- aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
- }
- for (ii = 0; ii < 3; ii++)
- {
+ aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!;
+ }
+ for (ii = 0; ii < 3; ii++) {
gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
gBias[ii] = calcGyro(gBiasRaw[ii]);
aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
aBias[ii] = calcAccel(aBiasRaw[ii]);
}
-
+
enableFIFO(false);
setFIFO(FIFO_OFF, 0x00);
-
+
if (autoCalc) _autoCalc = true;
}
@@ -369,30 +359,27 @@
int i, j;
int16_t magMin[3] = {0, 0, 0};
int16_t magMax[3] = {0, 0, 0}; // The road warrior
-
- for (i=0; i<128; i++)
- {
+
+ for (i=0; i<128; i++) {
while (!magAvailable())
;
readMag();
int16_t magTemp[3] = {0, 0, 0};
- magTemp[0] = mx;
+ magTemp[0] = mx;
magTemp[1] = my;
magTemp[2] = mz;
- for (j = 0; j < 3; j++)
- {
+ for (j = 0; j < 3; j++) {
if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
}
}
- for (j = 0; j < 3; j++)
- {
+ for (j = 0; j < 3; j++) {
mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
mBias[j] = calcMag(mBiasRaw[j]);
if (loadIn)
magOffset(j, mBiasRaw[j]);
}
-
+
}
void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
{
@@ -408,7 +395,7 @@
void LSM9DS1::initMag()
{
uint8_t tempRegValue = 0;
-
+
// CTRL_REG1_M (Default value: 0x10)
// [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
// TEMP_COMP - Temperature compensation
@@ -421,28 +408,27 @@
tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
mWriteByte(CTRL_REG1_M, tempRegValue);
-
+
// CTRL_REG2_M (Default value 0x00)
// [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
// FS[1:0] - Full-scale configuration
// REBOOT - Reboot memory content (0:normal, 1:reboot)
// SOFT_RST - Reset config and user registers (0:default, 1:reset)
tempRegValue = 0;
- switch (settings.mag.scale)
- {
- case 8:
- tempRegValue |= (0x1 << 5);
- break;
- case 12:
- tempRegValue |= (0x2 << 5);
- break;
- case 16:
- tempRegValue |= (0x3 << 5);
- break;
- // Otherwise we'll default to 4 gauss (00)
+ switch (settings.mag.scale) {
+ case 8:
+ tempRegValue |= (0x1 << 5);
+ break;
+ case 12:
+ tempRegValue |= (0x2 << 5);
+ break;
+ case 16:
+ tempRegValue |= (0x3 << 5);
+ break;
+ // Otherwise we'll default to 4 gauss (00)
}
mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
-
+
// CTRL_REG3_M (Default value: 0x03)
// [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
// I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
@@ -455,7 +441,7 @@
if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
tempRegValue |= (settings.mag.operatingMode & 0x3);
mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
-
+
// CTRL_REG4_M (Default value: 0x00)
// [0][0][0][0][OMZ1][OMZ0][BLE][0]
// OMZ[1:0] - Z-axis operative mode selection
@@ -465,7 +451,7 @@
tempRegValue = 0;
tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
mWriteByte(CTRL_REG4_M, tempRegValue);
-
+
// CTRL_REG5_M (Default value: 0x00)
// [0][BDU][0][0][0][0][0][0]
// BDU - Block data update for magnetic data
@@ -477,21 +463,21 @@
uint8_t LSM9DS1::accelAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
-
+
return (status & (1<<0));
}
uint8_t LSM9DS1::gyroAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
-
+
return ((status & (1<<1)) >> 1);
}
uint8_t LSM9DS1::tempAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
-
+
return ((status & (1<<2)) >> 2);
}
@@ -499,19 +485,18 @@
{
uint8_t status;
status = mReadByte(STATUS_REG_M);
-
+
return ((status & (1<<axis)) >> axis);
}
void LSM9DS1::readAccel()
{
- uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
+ uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
- if (_autoCalc)
- {
+ if (_autoCalc) {
ax -= aBiasRaw[X_AXIS];
ay -= aBiasRaw[Y_AXIS];
az -= aBiasRaw[Z_AXIS];
@@ -524,16 +509,16 @@
int16_t value;
xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
value = (temp[1] << 8) | temp[0];
-
+
if (_autoCalc)
value -= aBiasRaw[axis];
-
+
return value;
}
void LSM9DS1::readMag()
{
- uint8_t temp[6]; // We'll read six bytes from the mag into temp
+ uint8_t temp[6]; // We'll read six bytes from the mag into temp
mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
@@ -549,7 +534,7 @@
void LSM9DS1::readTemp()
{
- uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
+ uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
temperature = ((int16_t)temp[1] << 8) | temp[0];
}
@@ -561,8 +546,7 @@
gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
- if (_autoCalc)
- {
+ if (_autoCalc) {
gx -= gBiasRaw[X_AXIS];
gy -= gBiasRaw[Y_AXIS];
gz -= gBiasRaw[Z_AXIS];
@@ -573,21 +557,21 @@
{
uint8_t temp[2];
int16_t value;
-
+
xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
-
+
value = (temp[1] << 8) | temp[0];
-
+
if (_autoCalc)
value -= gBiasRaw[axis];
-
+
return value;
}
float LSM9DS1::calcGyro(int16_t gyro)
{
// Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
- return gRes * gyro;
+ return gRes * gyro;
}
float LSM9DS1::calcAccel(int16_t accel)
@@ -608,8 +592,7 @@
uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
// Mask out scale bits (3 & 4):
ctrl1RegValue &= 0xE7;
- switch (gScl)
- {
+ switch (gScl) {
case 500:
ctrl1RegValue |= (0x1 << 3);
settings.gyro.scale = 500;
@@ -623,8 +606,8 @@
break;
}
xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
-
- calcgRes();
+
+ calcgRes();
}
void LSM9DS1::setAccelScale(uint8_t aScl)
@@ -633,9 +616,8 @@
uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
// Mask out accel scale bits:
tempRegValue &= 0xE7;
-
- switch (aScl)
- {
+
+ switch (aScl) {
case 4:
tempRegValue |= (0x2 << 3);
settings.accel.scale = 4;
@@ -653,7 +635,7 @@
break;
}
xgWriteByte(CTRL_REG6_XL, tempRegValue);
-
+
// Then calculate a new aRes, which relies on aScale being set correctly:
calcaRes();
}
@@ -664,29 +646,28 @@
uint8_t temp = mReadByte(CTRL_REG2_M);
// Then mask out the mag scale bits:
temp &= 0xFF^(0x3 << 5);
-
- switch (mScl)
- {
- case 8:
- temp |= (0x1 << 5);
- settings.mag.scale = 8;
- break;
- case 12:
- temp |= (0x2 << 5);
- settings.mag.scale = 12;
- break;
- case 16:
- temp |= (0x3 << 5);
- settings.mag.scale = 16;
- break;
- default: // Otherwise we'll default to 4 gauss (00)
- settings.mag.scale = 4;
- break;
- }
-
+
+ switch (mScl) {
+ case 8:
+ temp |= (0x1 << 5);
+ settings.mag.scale = 8;
+ break;
+ case 12:
+ temp |= (0x2 << 5);
+ settings.mag.scale = 12;
+ break;
+ case 16:
+ temp |= (0x3 << 5);
+ settings.mag.scale = 16;
+ break;
+ default: // Otherwise we'll default to 4 gauss (00)
+ settings.mag.scale = 4;
+ break;
+ }
+
// And write the new register value back into CTRL_REG6_XM:
mWriteByte(CTRL_REG2_M, temp);
-
+
// We've updated the sensor, but we also need to update our class variables
// First update mScale:
//mScale = mScl;
@@ -697,8 +678,7 @@
void LSM9DS1::setGyroODR(uint8_t gRate)
{
// Only do this if gRate is not 0 (which would disable the gyro)
- if ((gRate & 0x07) != 0)
- {
+ if ((gRate & 0x07) != 0) {
// We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
uint8_t temp = xgReadByte(CTRL_REG1_G);
// Then mask out the gyro ODR bits:
@@ -714,8 +694,7 @@
void LSM9DS1::setAccelODR(uint8_t aRate)
{
// Only do this if aRate is not 0 (which would disable the accel)
- if ((aRate & 0x07) != 0)
- {
+ if ((aRate & 0x07) != 0) {
// We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
uint8_t temp = xgReadByte(CTRL_REG6_XL);
// Then mask out the accel ODR bits:
@@ -754,53 +733,55 @@
void LSM9DS1::calcmRes()
{
//mRes = ((float) settings.mag.scale) / 32768.0;
- switch (settings.mag.scale)
- {
- case 4:
- mRes = magSensitivity[0];
- break;
- case 8:
- mRes = magSensitivity[1];
- break;
- case 12:
- mRes = magSensitivity[2];
- break;
- case 16:
- mRes = magSensitivity[3];
- break;
+ switch (settings.mag.scale) {
+ case 4:
+ mRes = magSensitivity[0];
+ break;
+ case 8:
+ mRes = magSensitivity[1];
+ break;
+ case 12:
+ mRes = magSensitivity[2];
+ break;
+ case 16:
+ mRes = magSensitivity[3];
+ break;
}
-
+
}
void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
- h_lactive activeLow, pp_od pushPull)
+ h_lactive activeLow, pp_od pushPull)
{
// Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
// those two values.
// [generator] should be an OR'd list of values from the interrupt_generators enum
xgWriteByte(interrupt, generator);
-
+
// Configure CTRL_REG8
uint8_t temp;
temp = xgReadByte(CTRL_REG8);
-
+
+
if (activeLow) temp |= (1<<5);
else temp &= ~(1<<5);
-
+
if (pushPull) temp &= ~(1<<4);
else temp |= (1<<4);
-
+
+ temp |= 0x40; // Set BDU
+
xgWriteByte(CTRL_REG8, temp);
}
void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
{
uint8_t temp = 0;
-
+
temp = threshold & 0x7F;
if (sleepOn) temp |= (1<<7);
xgWriteByte(ACT_THS, temp);
-
+
xgWriteByte(ACT_DUR, duration);
}
@@ -811,12 +792,18 @@
return temp;
}
+uint8_t LSM9DS1::getStatus()
+{
+ uint8_t temp = xgReadByte(STATUS_REG_0);
+ return temp;
+}
+
void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
{
// Use variables from accel_interrupt_generator, OR'd together to create
// the [generator]value.
uint8_t temp = generator;
- if (andInterrupts) temp |= 0x80;
+ if (andInterrupts) temp |= 0x40;
xgWriteByte(INT_GEN_CFG_XL, temp);
}
@@ -825,7 +812,7 @@
// Write threshold value to INT_GEN_THS_?_XL.
// axis will be 0, 1, or 2 (x, y, z respectively)
xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
-
+
// Write duration and wait to INT_GEN_DUR_XL
uint8_t temp;
temp = (duration & 0x7F);
@@ -836,14 +823,9 @@
uint8_t LSM9DS1::getAccelIntSrc()
{
uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
-
- // Check if the IA_XL (interrupt active) bit is set
- if (intSrc & (1<<6))
- {
- return (intSrc & 0x3F);
- }
-
- return 0;
+
+ return (intSrc);
+
}
void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
@@ -865,7 +847,7 @@
// axis will be 0, 1, or 2 (x, y, z respectively)
xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
-
+
// Write duration and wait to INT_GEN_DUR_XL
uint8_t temp;
temp = (duration & 0x7F);
@@ -876,27 +858,26 @@
uint8_t LSM9DS1::getGyroIntSrc()
{
uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
-
+
// Check if the IA_G (interrupt active) bit is set
- if (intSrc & (1<<6))
- {
+ if (intSrc & (1<<6)) {
return (intSrc & 0x3F);
}
-
+
return 0;
}
void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
{
// Mask out non-generator bits (0-4)
- uint8_t config = (generator & 0xE0);
+ uint8_t config = (generator & 0xE0);
// IEA bit is 0 for active-low, 1 for active-high.
if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
// IEL bit is 0 for latched, 1 for not-latched
if (!latch) config |= (1<<1);
// As long as we have at least 1 generator, enable the interrupt
if (generator != 0) config |= (1<<0);
-
+
mWriteByte(INT_CFG_M, config);
}
@@ -911,13 +892,12 @@
uint8_t LSM9DS1::getMagIntSrc()
{
uint8_t intSrc = mReadByte(INT_SRC_M);
-
+
// Check if the INT (interrupt active) bit is set
- if (intSrc & (1<<0))
- {
+ if (intSrc & (1<<0)) {
return (intSrc & 0xFE);
}
-
+
return 0;
}
@@ -952,21 +932,18 @@
void LSM9DS1::constrainScales()
{
- if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
- (settings.gyro.scale != 2000))
- {
+ if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
+ (settings.gyro.scale != 2000)) {
settings.gyro.scale = 245;
}
-
+
if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
- (settings.accel.scale != 8) && (settings.accel.scale != 16))
- {
+ (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
settings.accel.scale = 2;
}
-
+
if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
- (settings.mag.scale != 12) && (settings.mag.scale != 16))
- {
+ (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
settings.mag.scale = 4;
}
}
@@ -1001,6 +978,9 @@
return I2CreadByte(_xgAddress, subAddress);
else if (settings.device.commInterface == IMU_MODE_SPI)
return SPIreadByte(_xgAddress, subAddress);
+ else
+ return(0);
+
}
void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
@@ -1009,9 +989,8 @@
// gyro-specific I2C address or SPI CS pin.
if (settings.device.commInterface == IMU_MODE_I2C) {
I2CreadBytes(_xgAddress, subAddress, dest, count);
- } else if (settings.device.commInterface == IMU_MODE_SPI) {
+ } else if (settings.device.commInterface == IMU_MODE_SPI)
SPIreadBytes(_xgAddress, subAddress, dest, count);
- }
}
uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
@@ -1022,6 +1001,8 @@
return I2CreadByte(_mAddress, subAddress);
else if (settings.device.commInterface == IMU_MODE_SPI)
return SPIreadByte(_mAddress, subAddress);
+ else
+ return(0);
}
void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
@@ -1036,12 +1017,12 @@
void LSM9DS1::initSPI()
{
- /*
+ /*
pinMode(_xgAddress, OUTPUT);
digitalWrite(_xgAddress, HIGH);
pinMode(_mAddress, OUTPUT);
digitalWrite(_mAddress, HIGH);
-
+
SPI.begin();
// Maximum SPI frequency is 10MHz, could divide by 2 here:
SPI.setClockDivider(SPI_CLOCK_DIV2);
@@ -1057,12 +1038,12 @@
{
/*
digitalWrite(csPin, LOW); // Initiate communication
-
+
// If write, bit 0 (MSB) should be 0
// If single write, bit 1 should be 0
SPI.transfer(subAddress & 0x3F); // Send Address
SPI.transfer(data); // Send data
-
+
digitalWrite(csPin, HIGH); // Close communication
*/
}
@@ -1070,23 +1051,23 @@
uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
{
uint8_t temp;
- // Use the multiple read function to read 1 byte.
+ // Use the multiple read function to read 1 byte.
// Value is returned to `temp`.
SPIreadBytes(csPin, subAddress, &temp, 1);
return temp;
}
void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
- uint8_t * dest, uint8_t count)
+ uint8_t * dest, uint8_t count)
{
// To indicate a read, set bit 0 (msb) of first byte to 1
uint8_t rAddress = 0x80 | (subAddress & 0x3F);
- // Mag SPI port is different. If we're reading multiple bytes,
+ // Mag SPI port is different. If we're reading multiple bytes,
// set bit 1 to 1. The remaining six bytes are the address to be read
if ((csPin == _mAddress) && count > 1)
rAddress |= 0x40;
-
- /*
+
+ /*
digitalWrite(csPin, LOW); // Initiate communication
SPI.transfer(rAddress);
for (int i=0; i<count; i++)
@@ -1099,17 +1080,17 @@
void LSM9DS1::initI2C()
{
- /*
+ /*
Wire.begin(); // Initialize I2C library
*/
-
+
//already initialized in constructor!
}
// Wire.h read and write protocols
void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
- /*
+ /*
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
@@ -1121,9 +1102,9 @@
uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
{
- char data;
+ char data;
char temp = subAddress;
-
+
//i2c.write(address, temp, 1);
//i2c.write(address & 0xFE);
//temp[1] = 0x00;
@@ -1134,8 +1115,8 @@
}
uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
-{
- /*
+{
+ /*
int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
Wire.beginTransmission(address); // Initialize the Tx buffer
// Next send the register to be read. OR with 0x80 to indicate multi-read.
@@ -1143,12 +1124,12 @@
Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
- Wire.requestFrom(address, count); // Read bytes from slave register address
+ Wire.requestFrom(address, count); // Read bytes from slave register address
while ((Wire.available() < count) && (timeout-- > 0))
delay(1);
if (timeout <= 0)
return -1;
-
+
for (int i=0; i<count;)
{
if (Wire.available())
@@ -1163,10 +1144,10 @@
char temp[1] = {subAddress};
i2c.write(address, temp, 1);
i2c.read(address, temp_dest, count);
-
+
//i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
for (i=0; i < count; i++) {
- dest[i] = temp_dest[i];
+ dest[i] = temp_dest[i];
}
return count;
}
--- a/LSM9DS1.h Wed Jul 20 21:38:08 2016 +0000
+++ b/LSM9DS1.h Tue Jul 26 21:16:58 2016 +0000
@@ -335,6 +335,10 @@
//! getGyroIntSrc() -- Get status of inactivity interrupt
uint8_t getInactivity();
+ //! getStatus() -- Get status register
+ uint8_t getStatus();
+
+
/** sleepGyro() -- Sleep or wake the gyroscope
* Input:
* - enable: True = sleep gyro. False = wake gyro.
