This class provides simplified I2C access to a MAXIM DS130x Real-Time Clock device, even if the LPC1768 has an embedded RTC module. My objective is to share the same RTC with Microchip 18F MCU.
DS130x_I2C.cpp
- Committer:
- Yann
- Date:
- 2011-02-09
- Revision:
- 0:a1b58e3c9fdb
- Child:
- 1:834e9897e269
File content as of revision 0:a1b58e3c9fdb:
#include <iostream>
#include "DS130x_I2C.h"
namespace DS130X_I2C {
CDS130X_I2C::CDS130X_I2C(const unsigned char p_slaveAddress, const PinName p_sda, const PinName p_scl, const CDS130X_I2C::OscillatorMode p_oscillatorMode, const bool p_outputLevel, const int p_frequency) : I2C(p_sda, p_scl, "DS130X_I2C"), _dayOfWeek("SunMonTueWedThuFriSat") {
DEBUG_ENTER("CDS130X_I2C::CDS130X_I2C: %02x - %x - %d", p_slaveAddress, p_oscillatorMode, p_frequency)
_slaveAddress = p_slaveAddress;
frequency(p_frequency); // Set the frequency of the I2C interface
_oscillatorMode = p_oscillatorMode;
_outputLevel = p_outputLevel;
DEBUG_LEAVE("CDS130X_I2C::CDS130X_I2C")
}
CDS130X_I2C::~CDS130X_I2C() {
DEBUG_ENTER("~CDS130X_I2C")
DEBUG_LEAVE("~CDS130X_I2C")
}
bool CDS130X_I2C::Initialize() {
DEBUG_ENTER("CDS130X_I2C::Initialize")
// 1. Set control register
unsigned char controlRegisterValue = 0x00;
switch (_oscillatorMode) { // See Datasheet - Clause CONTROL REGISTER
case CDS130X_I2C::One_Hz:
controlRegisterValue = 0x10;
break;
case CDS130X_I2C::Four_KHz:
controlRegisterValue = 0x11;
break;
case CDS130X_I2C::Height_KHz:
controlRegisterValue = 0x12;
break;
case CDS130X_I2C::ThirtyTwo_KHz:
controlRegisterValue = 0x13;
break;
case CDS130X_I2C::Output:
controlRegisterValue = (_outputLevel == true) ? 0x80 : 0x00;
break;
} // End of 'switch' statement
DEBUG("CDS130X_I2C::Initialize: controlRegisterValue = 0x%02x", controlRegisterValue)
// Write the control register
if (!Write(CDS130X_I2C::ControlRegisterAddress, controlRegisterValue)) {
DEBUG_ERROR("CDS130X_I2C::Initialize: I2C write operation failed")
return false;
} // else continue
// 2. Set the date format: Hours<6> set to 0 for 24-hour mode - See datasheet - Table 2. Timekeeper Registers
DEBUG("CDS130X_I2C::Initialize: Set date format")
// 1. Read hours
unsigned char hoursRegister = 0xff;
if (Read(CDS130X_I2C::HoursAddress, &hoursRegister) == (unsigned char)0) {
DEBUG("CDS130X_I2C::Initialize: hours:%x", hoursRegister)
// 2. Set bit 6 to 0
hoursRegister &= 0xbf; // 1011 1111
// 3. Write new value
if (Write(CDS130X_I2C::HoursAddress, hoursRegister)) {
DEBUG_ERROR("CDS130X_I2C::Initialize: Failed to set date format")
}
} else {
DEBUG_ERROR("CDS130X_I2C::Initialize: Failed to set date format")
}
// 3. Set CH bit is Seconds register - See Datasheet - Clause CLOCK AND CALENDAR
bool result = ControlClock(true);
DEBUG_LEAVE("CDS130X_I2C::Initialize: %x", result)
return result;
} // End of method CDS130X_I2C::Initialize
bool CDS130X_I2C::RestartClock() {
return ControlClock(true);
} // End of method CDS130X_I2C::RestartClock
bool CDS130X_I2C::HaltClock() {
return ControlClock(false);
} // End of method CDS130X_I2C::HaltClock
bool CDS130X_I2C::ControlClock(bool p_mode) {
DEBUG_ENTER("CDS130X_I2C::ControlClock")
// 1. Read seconds
unsigned char secondsRegister = 0x00;
if (Read(CDS130X_I2C::SecondsAddress, &secondsRegister)) {
DEBUG("CDS130X_I2C::ControlClock: seconds register = 0x%02x", secondsRegister)
// 2. Set bit
if (!p_mode) {
secondsRegister |= 0x80; // Set CH bit to halt oscilator
} else {
secondsRegister &= 0x7f; // Unset CH bit to restart oscilator
}
DEBUG("CDS130X_I2C::ControlClock: seconds register (new value) = 0x%02x - mode: %x", secondsRegister, p_mode)
// 3. Write new value
if (Write(CDS130X_I2C::SecondsAddress, secondsRegister)) {
DEBUG_LEAVE("CDS130X_I2C::ControlClock (true)")
return true;
}
DEBUG_LEAVE("CDS130X_I2C::ControlClock (false)")
return false;
}
DEBUG_LEAVE("CDS130X_I2C::ControlClock (false)")
return false;
} // End of method CDS130X_I2C::ControlClock
bool CDS130X_I2C::Read(const RegisterEnum p_address, unsigned char * p_byte, const CDS130X_I2C::RegisterFormatEnum p_format) {
DEBUG_ENTER("CDS130X_I2C::Read")
// 1. Read seconds
char i2cBuffer[1];
i2cBuffer[0] = (char)(unsigned char)p_address;
// Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 1, true) == 0) {
// 2. Read data + I2C stop
int result = read(_slaveAddress, (char *)p_byte, 1);
wait(0.02);
// 3. Format convertion
if (p_format == CDS130X_I2C::Binary) {
switch ((RegisterEnum)p_address) {
case CDS130X_I2C::SecondsAddress:
//No break;
case CDS130X_I2C::MinutesAddress:
*p_byte = ConvertBCDToHex(*p_byte & 0x7f); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::HoursAddress:
//No break;
case CDS130X_I2C::DayAddress:
*p_byte = ConvertBCDToHex(*p_byte & 0x3f); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::DayOfWeekAddress:
*p_byte = ConvertBCDToHex(*p_byte & 0x03); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::MonthAddress:
*p_byte = ConvertBCDToHex(*p_byte & 0x1f); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::YearAddress:
*p_byte = ConvertBCDToHex(*p_byte); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
} // End of 'switch' statement
} // else nothing to do
DEBUG_LEAVE("CDS130X_I2C::Read %d", (int)*p_byte)
return true;
}
DEBUG_LEAVE("CDS130X_I2C::Read (false)")
return false;
} // End of method CDS130X_I2C::Read
bool CDS130X_I2C::Write(const RegisterEnum p_address, const unsigned char p_byte, const CDS130X_I2C::RegisterFormatEnum p_format) {
DEBUG_ENTER("CDS130X_I2C::Write")
// 1. Format convertion
unsigned char value = p_byte;
if (p_format == CDS130X_I2C::Binary) {
switch ((RegisterEnum)p_address) {
case CDS130X_I2C::SecondsAddress:
//No break;
case CDS130X_I2C::MinutesAddress:
value = ConvertHexToBCD(p_byte) & 0x7f; // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::HoursAddress: // Force Hours<6> set to 0 for 24-hour mode - See datasheet - Table 2. Timekeeper Registers
//No break;
case CDS130X_I2C::DayAddress:
value = ConvertHexToBCD(p_byte) & 0x3f; // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::DayOfWeekAddress:
value = ConvertHexToBCD(p_byte) & 0x03; // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::MonthAddress:
value = ConvertHexToBCD(p_byte) & 0x1f; // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
case CDS130X_I2C::YearAddress:
value = ConvertHexToBCD(p_byte); // Convert hex to BCD - See datasheet - Table 2. Timekeeper Registers
break;
} // End of 'switch' statement
} // else nothing to do
// 2. Read seconds
char i2cBuffer[2];
i2cBuffer[0] = (char)(unsigned char)p_address;
i2cBuffer[1] = value;
// Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 2) == 0) {
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::Write (true)")
return true;
}
DEBUG_LEAVE("CDS130X_I2C::Write (false)")
return false;
} // End of method CDS130X_I2C::Write
bool CDS130X_I2C::SetTime(const std::string p_utcTime) {
DEBUG_ENTER("CDS130X_I2C::SetTime: %s - %d", p_utcTime.c_str(), p_utcTime.length())
// Sanity checks
if (p_utcTime.length() != 23) {
DEBUG_ERROR("CDS130X_I2C::SetTime: Wrong parameters")
return false;
}
// Fill struct tm;
struct tm t = {0};
char wday[4] = {0};
scanf("%s %02d %02d %02d:%02d:%02d %04d", /* Www MM dd hh:mm:ss yyyy */
wday,
&t.tm_mon,
&t.tm_mday,
&t.tm_hour,
&t.tm_min,
&t.tm_sec,
&t.tm_year);
DEBUG("CDS130X_I2C::SetTime: wday=%s - tm_wday=%d", wday, _dayOfWeek.find_first_of(wday) / 3);
t.tm_wday = _dayOfWeek.find_first_of(wday) / 3;
Write(CDS130X_I2C::SecondsAddress, t.tm_sec, Binary);
Write(CDS130X_I2C::MinutesAddress, t.tm_min, Binary);
Write(CDS130X_I2C::HoursAddress, t.tm_hour, Binary);
Write(CDS130X_I2C::DayOfWeekAddress, t.tm_wday, Binary);
Write(CDS130X_I2C::DayAddress, t.tm_mday, Binary);
Write(CDS130X_I2C::MonthAddress, t.tm_mon, Binary);
Write(CDS130X_I2C::YearAddress, t.tm_year, Binary);
return true;
} // End of method CDS130X_I2C::SetTime
struct tm CDS130X_I2C::GetTime() {
DEBUG_ENTER("CDS130X_I2C::GetTime")
struct tm t;
unsigned char value;
// Setup time structure from RTC
Read(CDS130X_I2C::SecondsAddress, &value, Binary);
t.tm_sec = value;
Read(CDS130X_I2C::MinutesAddress, &value, Binary);
t.tm_min = value;
Read(CDS130X_I2C::HoursAddress, &value, Binary);
t.tm_hour = value;
Read(CDS130X_I2C::DayOfWeekAddress, &value, Binary);
t.tm_wday = value;
Read(CDS130X_I2C::DayAddress, &value, Binary);
t.tm_mday = value;
Read(CDS130X_I2C::MonthAddress, &value, Binary);
t.tm_mon = value;
Read(CDS130X_I2C::YearAddress, &value, Binary);
t.tm_year = value;
DEBUG("CDS130X_I2C::GetTime: %02d %02d %02d %02d:%02d:%02d %04d", /* ww mm dd hh:mm:ss yyyy */
t.tm_wday,
t.tm_mon,
t.tm_mday,
t.tm_hour,
t.tm_min,
t.tm_sec,
t.tm_year);
DEBUG_LEAVE("CDS130X_I2C::GetTime")
return t;
} // End of method CDS130X_I2C::GetTime
bool CDS130X_I2C::EraseMemoryArea(const unsigned char p_startAddress, const int p_count, const unsigned char p_pattern) {
DEBUG_ENTER("CDS130X_I2C::EraseMemoryArea): 0x%02x - %d - 0x%02x", p_startAddress, p_count, p_pattern)
std::vector<unsigned char> eraseBuffer(p_count, p_pattern);
return WriteMemory(p_startAddress, eraseBuffer, false);
}
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const unsigned char p_byte) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (byte): Memory address: 0x%02x", p_address)
// 1.Prepare buffer
char i2cBuffer[2]; // Memory address + one byte of data
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::WriteMemory (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 1.2. Datas
i2cBuffer[1] = p_byte;
DEBUG("CDS130X_I2C::WriteMemory (byte): value=0x%02x", i2cBuffer[1])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = write(_slaveAddress, i2cBuffer, 2);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::WriteMemory (byte) %x", (bool)(result == 0))
return (bool)(result == 0);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const short p_short, const CDS130X_I2C::Mode p_mode) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (short): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[3]; // Memory address + one short (2 bytes)
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::WriteMemory (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 1.2. Datas
if (p_mode == BigEndian) {
i2cBuffer[1] = (unsigned char)(p_short >> 8);
i2cBuffer[2] = (unsigned char)((unsigned char)p_short & 0xff);
} else {
i2cBuffer[1] = (unsigned char)((unsigned char)p_short & 0xff);
i2cBuffer[2] = (unsigned char)(p_short >> 8);
}
DEBUG("CDS130X_I2C::WriteMemory (byte): value=0x%02x%02x", i2cBuffer[1], i2cBuffer[2])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = write(_slaveAddress, i2cBuffer, 3);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::WriteMemory (short) %x", (bool)(result == 0))
return (bool)(result == 0);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const int p_int, const CDS130X_I2C::Mode p_mode) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (int): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[5]; // Memory address + one integer (4 bytes)
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::WriteMemory (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 1.2. Datas
if (p_mode == BigEndian) {
i2cBuffer[1] = (unsigned char)(p_int >> 24);
i2cBuffer[2] = (unsigned char)(p_int >> 16);
i2cBuffer[3] = (unsigned char)(p_int >> 8);
i2cBuffer[4] = (unsigned char)((unsigned char)p_int & 0xff);
} else {
i2cBuffer[1] = (unsigned char)((unsigned char)p_int & 0xff);
i2cBuffer[2] = (unsigned char)(p_int >> 8);
i2cBuffer[3] = (unsigned char)(p_int >> 16);
i2cBuffer[4] = (unsigned char)(p_int >> 24);
}
DEBUG("CDS130X_I2C::WriteMemory (byte): value=0x%02x%02x%02x%02x", i2cBuffer[1], i2cBuffer[2], i2cBuffer[3], i2cBuffer[4])
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = write(_slaveAddress, i2cBuffer, 5);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::WriteMemory (int) %x", (bool)(result == 0))
return (bool)(result == 0);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const std::string & p_string, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (std::string)")
return WriteMemory(p_address, p_string.c_str(), p_storeLength, p_length2write);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const std::vector<unsigned char> & p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (std::vector)")
int length = (p_length2write == -1) ? p_datas.size() : p_length2write;
unsigned char array[length];
std::copy(p_datas.begin(), p_datas.end(), array);
bool result = WriteMemory(p_address, array, p_storeLength, length);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::WriteMemory (std::vector): %d", result)
return result;
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const char *p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (char *): Memory address: 0x%02x - %x - %d", p_address, p_storeLength, p_length2write)
// 1.Prepare buffer
int length = (p_length2write == -1) ? strlen(p_datas) : p_length2write;
if (p_storeLength) {
length += 1; // Add one byte for the length
}
DEBUG("CDS130X_I2C::WriteMemory (char *): length:%d", length)
char i2cBuffer[1 + length];
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::WriteMemory (char *): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 1.2. Datas
if (p_storeLength) {
// Fill the length
i2cBuffer[1] = (unsigned char)length;
for (int i = 0; i < length; i++) {
i2cBuffer[2 + i] = *(p_datas + i);
}
} else { // The length was not stored
for (int i = 0; i < length; i++) {
i2cBuffer[1 + i] = *(p_datas + i);
}
}
// 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop
int result = write(_slaveAddress, i2cBuffer, 1 + length);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::WriteMemory (char *) %x", (bool)(result == 0))
return (bool)(result == 0);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::WriteMemory(const unsigned char p_address, const unsigned char *p_datas, const bool p_storeLength, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::WriteMemory (byte *): Memory address: 0x%02x", p_address, p_storeLength, p_length2write)
return WriteMemory(p_address, (const char *)p_datas, p_storeLength, p_length2write);
} // End of method CDS130X_I2C::WriteMemory
bool CDS130X_I2C::ReadMemory(const unsigned char p_address, unsigned char * p_byte) {
DEBUG_ENTER("CDS130X_I2C::ReadMemory (byte): Memory address:0x%02x", p_address)
// 1.Prepare buffer
char i2cBuffer[1];
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::ReadMemory (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 2. Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 1, true) == 0) {
// 2. Read data + I2C stop
int result = read(_slaveAddress, (char *)p_byte, 1);
wait(0.02);
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (byte): %x", (bool)(result == 0))
return (bool)(result == 0);
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (byte) (false)")
return false;
} // End of method CDS130X_I2C::ReadMemory
bool CDS130X_I2C::ReadMemory(const unsigned char p_address, short *p_short, const CDS130X_I2C::Mode p_mode) {
DEBUG_ENTER("CDS130X_I2C::ReadMemory (short): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[2];
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::ReadMemory (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 2. Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 1, true) == 0) {
// 2. Read data + I2C stop
int result = read(_slaveAddress, i2cBuffer, 2);
wait(0.02);
if (p_mode == BigEndian) {
*p_short = (short)(i2cBuffer[0] << 8 | i2cBuffer[1]);
} else {
*p_short = (short)(i2cBuffer[1] << 8 | i2cBuffer[0]);
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (short): %x", (bool)(result == 0))
return (bool)(result == 0);
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (short) (false)")
return false;
} // End of method CDS130X_I2C::ReadMemory
bool CDS130X_I2C::ReadMemory(const unsigned char p_address, int *p_int, const CDS130X_I2C::Mode p_mode) {
DEBUG_ENTER("CDS130X_I2C::ReadMemory (int): Memory address:0x%02x, Mode:%d", p_address, p_mode)
// 1.Prepare buffer
char i2cBuffer[4];
// 1.1. Memory address
i2cBuffer[0] = CDS130X_I2C::BaseMemoryAddress + p_address;
DEBUG("CDS130X_I2C::ReadMemory (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 2. Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 1, true) == 0) {
// 2. Read data + I2C stop
int result = read(_slaveAddress, i2cBuffer, 4);
wait(0.02);
if (p_mode == BigEndian) {
*p_int = (int)(i2cBuffer[0] << 24 | i2cBuffer[1] << 16 | i2cBuffer[2] << 8 | i2cBuffer[3]);
} else {
*p_int = (int)(i2cBuffer[3] << 24 | i2cBuffer[2] << 16 | i2cBuffer[1] << 8 | i2cBuffer[0]);
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (int): %x", (bool)(result == 0))
return (bool)(result == 0);
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (int) (false)")
return false;
} // End of method CDS130X_I2C::ReadMemory
bool CDS130X_I2C::ReadMemory(const unsigned char p_address, std::vector<unsigned char> & p_datas, const bool p_readLengthFirst, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::ReadMemory (vector): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write)
// 1.Prepare buffer
unsigned char address = CDS130X_I2C::BaseMemoryAddress + p_address;
int length;
if (p_readLengthFirst) {
ReadMemory(address, &length); // Read the length in big endian mode
address += 1; // Skip the length value
length -= 1; // length is the size of (string length + string)
} else {
if (p_length2write == -1) {
length = p_datas.size();
} else {
length = p_length2write;
}
}
// 2. Memory address
char i2cBuffer[1];
i2cBuffer[0] = address;
DEBUG("CDS130X_I2C::ReadMemory (vector): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
// 3. Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 1, true) == 0) {
// 4. read data + I2C stop
unsigned char buffer[length];
int result = read(_slaveAddress, (char *)buffer, length);
wait(0.02);
if (result == 0) {
p_datas.assign(buffer, buffer + length);
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (vector): %x", (bool)(result == 0))
return (bool)(result == 0);
}
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (vector) (false)")
return false;
} // End of method CDS130X_I2C::ReadMemory
bool CDS130X_I2C::ReadMemory(const unsigned char p_address, std::string & p_string, const bool p_readLengthFirst, const int p_length2write) {
DEBUG_ENTER("CDS130X_I2C::ReadMemory (string): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write)
// 1.Prepare buffer
unsigned char address = CDS130X_I2C::BaseMemoryAddress + p_address;
int length;
if (p_readLengthFirst) { // The string was stored with its length
if (!ReadMemory(address, &length)) { // Read the length in big endian mode
DEBUG_ERROR("CDS130X_I2C::ReadMemory (string): Failed to read length")
return false;
}
wait(0.02);
address += 4; // Skip the length value size
length -= 4; // length is the size of (string length + string)
} else { // The string length is provided by p_length2write parameter
if (p_length2write == -1) {
length = p_string.size();
} else {
length = p_length2write;
p_string.resize(p_length2write);
}
}
DEBUG("CDS130X_I2C::ReadMemory (string): Length=%d", length)
// 2. Memory address
char i2cBuffer[2];
i2cBuffer[0] = address;
DEBUG("CDS130X_I2C::ReadMemory (string): pI2CBuffer[0]: 0x%02x", i2cBuffer[0])
i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff);
DEBUG("CDS130X_I2C::ReadMemory (string): pI2CBuffer[1]: 0x%02x", i2cBuffer[1])
// 3. Send I2C start + memory address
if (write(_slaveAddress, i2cBuffer, 2, true) == 0) {
// 4. Read data + I2C stop
char buffer[length];
int result = read(_slaveAddress, (char *)buffer, length);
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (string): %d", result)
if (result == 0) {
p_string.assign(buffer, length);
return true;
}
}
DEBUG_LEAVE("CDS130X_I2C::ReadMemory (string) (false)")
return false;
} // End of method CDS130X_I2C::ReadMemory
#if defined(__DEBUG)
void CDS130X_I2C::DumpMemoryArea(const unsigned char p_address, const int p_count) {
DEBUG_ENTER("CDS130X_I2C::DumpMemoryArea: %02x - %d", p_address, p_count)
DEBUG("CDS130X_I2C::DumpMemoryArea: Reading datas...");
std::vector<unsigned char> datas(p_count);
if (!ReadMemory((unsigned char)CDS130X_I2C::BaseMemoryAddress + p_address, datas, false)) { // Read bytes, including the lenght indication, buffer size is not set before the call
#ifdef __DEBUG
DEBUG_FATAL("CDS130X_I2C::DumpMemoryArea: read failed")
#else // __DEBUG
std::cout << "CDS130X_I2C::DumpMemoryArea: read failed\r" << std::endl
#endif // __DEBUG
} else {
std::cout << "CDS130X_I2C::DumpMemoryArea: Read bytes:\r" << std::endl;
HEXADUMP(&datas[0], p_count);
std::cout << "\r" << std::endl;
}
} // End of method CDS130X_I2C::DumpMemoryArea
#endif // _DEBUG
} // End of namespace DS130X_I2C
Yann Garcia