start to work from here...
Dependencies: MPU6050-DMP mbed ros_lib_kinetic
Fork of AGV_0411 by
main.cpp
- Committer:
- WeberYang
- Date:
- 2018-10-02
- Revision:
- 11:6d5307ceb569
- Parent:
- 10:8b7fce3bba86
File content as of revision 11:6d5307ceb569:
/*
0412 combine the sevro motor encoder to publish
*/
#include "MPU6050_6Axis_MotionApps20.h"
#include "mbed.h"
#include "CAN.h"
#include "I2Cdev.h"
#include "MPU6050.h"
#include <ros.h>
#include <ros/time.h>
#include <std_msgs/Int16.h>
#include <std_msgs/String.h>
#include <std_msgs/Float32.h>
#include <sensor_msgs/BatteryState.h>
#include <geometry_msgs/Twist.h> //set buffer larger than 50byte
#include <math.h>
#include <stdio.h>
#include <tiny_msgs/tinyVector.h>
#include <tiny_msgs/tinyIMU.h>
#include <string>
#include <cstdlib>
#define Start 0xAA
#define Address 0x7F
#define ReturnType 0x00
#define Clean 0x00
#define Reserve 0x00
#define End 0x55
#define Motor1 1
#define Motor2 2
#define LENG 31 //0x42 + 31 bytes equal to 32 bytes
#define Write 0x06
#define Read 0x03
#define DI1 0x0214 //0214H means digital input DI1 for sevro on
#define APR 0x0066 //0066H means encoder abs rev
#define SP1 0x0112
#define CAN_DATA 0x470
#define CAN_STATUS 0x471
#define IDLE 0
#define ACT_MG_ON 1
#define ACT_MG_OFF 2
#define Check_BMS_ON 3
#define Check_BMS_OFF 4
#define WAIT_BAT 5
//Serial pc(USBTX,USBRX);
Timer t;
Serial RS232(PA_9, PA_10);
DigitalOut Receiver(D7); //RS485_E
DigitalOut CAN_T(D14);
DigitalOut CAN_R(D15);
DigitalOut DO_0(PC_5);
DigitalOut DO_1(PC_6);
DigitalOut DO_2(PC_8);
DigitalOut DO_3(PC_9);
DigitalOut DO_4(PA_12);
DigitalIn DI_0(PB_13);
//CAN can1(PB_8,PB_9); // CAN Rx pin name, CAN Tx pin name
//CANMsg rxMsg;
//CANMessage rxMsg;
Ticker CheckDataR;
MPU6050 mpu;//(PB_7,PB_6); // sda, scl pin
ros::NodeHandle nh;
//======================================================================
tiny_msgs::tinyIMU imu_msg;
ros::Publisher imu_pub("tinyImu", &imu_msg);
//======================================================================
//======================================================================
std_msgs::Float32 VelAngular_L;
ros::Publisher pub_lmotor("pub_lmotor", &VelAngular_L);
//======================================================================
//======================================================================
std_msgs::Float32 VelAngular_R;
ros::Publisher pub_rmotor("pub_rmotor", &VelAngular_R);
//======================================================================
//======================================================================
sensor_msgs::BatteryState BTState;
ros::Publisher BT_pub("BatteryState", &BTState);
//======================================================================
//======================================================================
std_msgs::Int16 DI;
ros::Publisher DI_pub("DI_pub", &DI);
//======================================================================
//======================================================================
std_msgs::Int16 ACT_state;
ros::Publisher ACT_state_pub("ACT_state_pub", &ACT_state);
//======================================================================
//======================================================================
std_msgs::Int16 Error_state;
ros::Publisher Error_state_pub("Error_state_pub", &Error_state);
//======================================================================
uint32_t seq;
//========define ACT_state return code============================================
#define Satndby 0
#define Busy 1
#define Sensor_error 2
#define BMS_error 3
//========================================================
#define IMU_FIFO_RATE_DIVIDER 0x09
#define IMU_SAMPLE_RATE_DIVIDER 4
#define MPU6050_GYRO_FS MPU6050_GYRO_FS_2000
#define MPU6050_ACCEL_FS MPU6050_ACCEL_FS_2
#define PC_BAUDRATE 38400
#define DEG_TO_RAD(x) ( x * 0.01745329 )
#define RAD_TO_DEG(x) ( x * 57.29578 )
const int FIFO_BUFFER_SIZE = 128;
uint8_t fifoBuffer[FIFO_BUFFER_SIZE];
uint16_t fifoCount;
uint16_t packetSize;
bool dmpReady;
uint8_t mpuIntStatus;
const int snprintf_buffer_size = 100;
char snprintf_buffer[snprintf_buffer_size];
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };
int16_t ax, ay, az;
int16_t gx, gy, gz;
float Lrpm,Rrpm;
float ticks_since_target;
float motor_rpm_r, motor_rpm_l;
float timeout_ticks;
int counter;
double w;
double rate;
double Dimeter;
float dx,dy,dr;
int lastsensorState = 1;
int sensorState;
int db_conter = 0;
int buffer[9] = {0};
int dataH,datanum;
int motor_seq,motor_old_seq;
int state_code;
int error_code;
//=========RS485
char recChar=0;
bool recFlag=false;
char recArr[20];
int index=0;
int BMS_state;
uint32_t SOC;
uint32_t Tempert;
uint32_t RackVoltage = 0;
uint32_t Current = 0;
uint32_t MaxCellV = 0;
uint32_t MinCellV = 0;
struct Offset {
int16_t ax, ay, az;
int16_t gx, gy, gz;
}offset = {150+600, -350+300, 1000, -110-100, 5, 0};//{150, -350, 1000, -110, 5, 0}; // Measured values
struct MPU6050_DmpData {
Quaternion q;
VectorFloat gravity; // g
float roll, pitch, yaw; // rad
}dmpData;
long map(long x, long in_min, long in_max, long out_min, long out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
//==========define sub function========================
bool Init();
void dmpDataUpdate();
unsigned int CRC_Verify(unsigned char *cBuffer, unsigned int iBufLen);
int myabs( int a );
void TwistToMotors();
//===================================================
//======================= motor =================================================
unsigned int CRC_Verify(unsigned char *cBuffer, unsigned int iBufLen)
{
unsigned int i, j;
//#define wPolynom 0xA001
unsigned int wCrc = 0xffff;
unsigned int wPolynom = 0xA001;
/*---------------------------------------------------------------------------------*/
for (i = 0; i < iBufLen; i++)
{
wCrc ^= cBuffer[i];
for (j = 0; j < 8; j++)
{
if (wCrc &0x0001)
{
wCrc = (wCrc >> 1) ^ wPolynom;
}
else
{
wCrc = wCrc >> 1;
}
}
}
return wCrc;
}
void Sendmessage(float Rrpm,float Lrpm)
{
// RS232.printf("Wr = %.1f\n",Rrpm);
// RS232.printf("Wl = %.1f\n",Lrpm);
unsigned char sendData[16];
unsigned int tmpCRC;
int motor1,motor2;
sendData[0] = Start;
sendData[1] = Address;
sendData[2] = ReturnType;
sendData[3] = Clean;
sendData[4] = Reserve;
sendData[5] = 0x01;//motor1Sevro ON
sendData[6] = 0x01;//motor2Sevro ON
if (Rrpm>0){sendData[7] = 0x00;}else{sendData[7] = 0x01;}
if (Lrpm>0){sendData[8] = 0x01;}else{sendData[8] = 0x00;}
motor1 = abs(Rrpm);
motor2 = abs(Lrpm);
sendData[9] = (motor1>>8);//motor1speedH
sendData[10] = (motor1 & 0xFF);//motor1speedL
sendData[11] = (motor2>>8);//motor2speedH
sendData[12] = (motor2 & 0xFF);//motor2speedL
sendData[13] = End;
tmpCRC = CRC_Verify(sendData, 14);
sendData[14] = (tmpCRC & 0xFF);
sendData[15] = (tmpCRC>>8);
int i;
for (i=0;i<16;i++)
{
RS232.printf("%c",sendData[i]);
}
RS232.printf("\r\n");
}
void TwistToMotors()
{
float right,left;
// double vel_data[2];
float vel_data[2];
float motor_rpm_vx, motor_rpm_theta;
motor_old_seq = motor_seq;
w = 0.302;//0.2 ;//m
rate = 20;//50;
timeout_ticks = 2;
Dimeter = 0.127;//0.15;
// prevent agv receive weird 1.0 command from cmd_vel
if (dr == 1.0){
dr = 0.001;
}
right = ( 1.0 * dx ) + (dr * w /2);
left = ( 1.0 * dx ) - (dr * w /2);
motor_rpm_vx = ( 1.0 * dx )*rate/(Dimeter/2)*60/(2*3.1416);
if((motor_rpm_vx !=0) && (myabs(motor_rpm_vx)<100)){
if(motor_rpm_vx >0){
motor_rpm_vx = 100;
}
else{
motor_rpm_vx = -100;
}
}
motor_rpm_theta=(dr * w /2)*rate/(Dimeter/2)*60/(2*3.1416);
motor_rpm_r = motor_rpm_vx+ motor_rpm_theta;
motor_rpm_l = motor_rpm_vx- motor_rpm_theta;
if (myabs(motor_rpm_r)<100|| myabs(motor_rpm_l)<100){
if( dx==0){
if(dr>0){
motor_rpm_r=100;
motor_rpm_l=-100;
}else if (dr<0){
motor_rpm_r=-100;
motor_rpm_l=100;
}else{
motor_rpm_r=0;
motor_rpm_l=0;
}
}
else if(dx>0){
if (myabs(motor_rpm_r)<100){
motor_rpm_r =100;
}
if (myabs(motor_rpm_l)<100){
motor_rpm_l =100;
}
}
else{
if(myabs(motor_rpm_r)<100){
motor_rpm_r =-100;
}
if(myabs(motor_rpm_l)<100){
motor_rpm_l =-100;
}
}
}
vel_data[0] = motor_rpm_r;
vel_data[1] = motor_rpm_l;
//===================================================================
//Sendmessage(vel_data[0],vel_data[1]);
//Sendmessage(motor_rpm_l,motor_rpm_r);
VelAngular_R.data = vel_data[0];
VelAngular_L.data = vel_data[1];
//if(VelAngular_R.data >2000 || VelAngular_L.data>2000){
//}
//else{
pub_rmotor.publish( &VelAngular_R );
pub_lmotor.publish( &VelAngular_L );
//}
//RS232.printf("Wr = %.1f\n",vel_data[0]);
//RS232.printf("Wl = %.1f\n",vel_data[1]);
ticks_since_target += 1;
}
int myabs( int a ){
if ( a < 0 ){
return -a;
}
return a;
}
int str2int(const char* str, int star, int end)
{
int i;
int ret = 0;
for (i = star; i < end+1; i++)
{
ret = ret *10 + (str[i] - '0');
}
return ret;
}
void update_state(int code1,int code2){
}
//======================================================================
std_msgs::Int16 DO;
//DO_0 MAG_1
//DO_1,MAG_2
//DO_2,MAG_3
//DO_3,BMS
//DO_4,MainRelay
int State;
void DO_ACT(const std_msgs::Int16 &msg){
//0xFF for action procedure
if (msg.data == 0x21){
error_code = 99;
State = WAIT_BAT;//ACT_MG_ON;
}
if (msg.data == 0x20){
error_code = 99;
State = ACT_MG_OFF;
}
if (msg.data == 0x00){
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_3 = 0;
DO_4 = 0;
}
if (msg.data == 0x40){
//BMS trigger
DO_3 = 1;
wait(3);
DO_3 = 0;
}
if (msg.data == 0x50){
//Main Relay off
DO_4 = 0;
}
if (msg.data == 0x51){
//Main Relay on
DO_4 = 1;
}
if (msg.data == 0x31){
//Lock triggrt
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_0 = 0;
DO_1 = 1;
DO_2 = 0;
wait_ms(500);
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
}
if (msg.data == 0x30){
//unLock triggrt
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_0 = 1;
DO_1 = 0;
DO_2 = 0;
DO_0 = 1;
DO_1 = 0;
DO_2 = 1;
wait_ms(500);
DO_0 = 1;
DO_1 = 0;
DO_2 = 0;
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
}
}
ros::Subscriber<std_msgs::Int16> ACT_sub("DO_data", &DO_ACT);
//======================================================================
//======================================================================================
void messageCb(const geometry_msgs::Twist &msg)
{
// RS232.printf("messageCb");
ticks_since_target = 0;
dx = msg.linear.x;
dy = msg.linear.y;
dr = msg.angular.z;
// RS232.printf("dx = %d,dy = %d,dr = %d\r\n",dx,dy,dr);
TwistToMotors();
//ReadENC(Motor1);
}
ros::Subscriber<geometry_msgs::Twist> cmd_vel_sub("cmd_vel", &messageCb);
//======================================================================================
void dmpDataUpdate() {
// Check that this interrupt has enabled.
if (dmpReady == false) return;
mpuIntStatus = mpu.getIntStatus();
fifoCount = mpu.getFIFOCount();
// Check that this interrupt is a FIFO buffer overflow interrupt.
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
mpu.resetFIFO();
//pc.printf("FIFO overflow!\n");
return;
// Check that this interrupt is a Data Ready interrupt.
} else if (mpuIntStatus & 0x02) {
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
mpu.getFIFOBytes(fifoBuffer, packetSize);
#ifdef OUTPUT_QUATERNION
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Quaternion : w=%f, x=%f, y=%f, z=%f\n", dmpData.q.w, dmpData.q.x, dmpData.q.y, dmpData.q.z ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
#ifdef OUTPUT_EULER
float euler[3];
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
mpu.dmpGetEuler(euler, &dmpData.q);
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Euler : psi=%fdeg, theta=%fdeg, phi=%fdeg\n", RAD_TO_DEG(euler[0]), RAD_TO_DEG(euler[1]), RAD_TO_DEG(euler[2]) ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
#ifdef OUTPUT_ROLL_PITCH_YAW
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
mpu.dmpGetGravity(&dmpData.gravity, &dmpData.q);
float rollPitchYaw[3];
mpu.dmpGetYawPitchRoll(rollPitchYaw, &dmpData.q, &dmpData.gravity);
dmpData.roll = rollPitchYaw[2];
dmpData.pitch = rollPitchYaw[1];
dmpData.yaw = rollPitchYaw[0];
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Roll:%6.2fdeg, Pitch:%6.2fdeg, Yaw:%6.2fdeg\n", RAD_TO_DEG(dmpData.roll), RAD_TO_DEG(dmpData.pitch), RAD_TO_DEG(dmpData.yaw) ) < 0 ) return;
pc.printf(snprintf_buffer);
#ifdef servotest
int servoPulse = map((long)(RAD_TO_DEG(dmpData.yaw)*100), -9000, 9000, 500, 1450);
if(servoPulse > 1450) servoPulse = 1450;
if(servoPulse < 500) servoPulse = 500;
sv.pulsewidth_us(servoPulse);
#endif
#endif
#ifdef OUTPUT_FOR_TEAPOT
teapotPacket[2] = fifoBuffer[0];
teapotPacket[3] = fifoBuffer[1];
teapotPacket[4] = fifoBuffer[4];
teapotPacket[5] = fifoBuffer[5];
teapotPacket[6] = fifoBuffer[8];
teapotPacket[7] = fifoBuffer[9];
teapotPacket[8] = fifoBuffer[12];
teapotPacket[9] = fifoBuffer[13];
for (uint8_t i = 0; i < 14; i++) {
pc.putc(teapotPacket[i]);
}
#endif
#ifdef OUTPUT_TEMPERATURE
float temp = mpu.getTemperature() / 340.0 + 36.53;
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Temp:%4.1fdeg\n", temp ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
// pc.printf("\n");
}
}
//=======================================================
bool Init() {
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_3 = 0;
DO_4 = 1;//for manual turn on the LiBattery, and turn on the main relay to open Load
seq = 0;
nh.initNode();
// nh.advertise(imu_pub);
nh.advertise(pub_lmotor);
nh.advertise(pub_rmotor);
nh.advertise(BT_pub);
nh.advertise(DI_pub);
nh.advertise(ACT_state_pub);
nh.advertise(Error_state_pub);
nh.subscribe(cmd_vel_sub);
nh.subscribe(ACT_sub);
//==========================
/*
mpu.initialize();
if (mpu.testConnection()) {
// pc.printf("MPU6050 test connection passed.\n");
} else {
// pc.printf("MPU6050 test connection failed.\n");
return false;
}
if (mpu.dmpInitialize() == 0) {
// pc.printf("succeed in MPU6050 DMP Initializing.\n");
} else {
// pc.printf("failed in MPU6050 DMP Initializing.\n");
return false;
}
//mpu.setXAccelOffsetTC(offset.ax);
// mpu.setYAccelOffsetTC(offset.ay);
// mpu.setZAccelOffset(offset.az);
mpu.setXAccelOffset(1000); //2000 -3134
mpu.setYAccelOffset(0);
mpu.setZAccelOffset(0);
mpu.setXGyroOffset(800);//offset.gx);
mpu.setYGyroOffset(0);//offset.gy);
mpu.setZGyroOffset(0);//offset.gz);
mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_250);//2000);
mpu.setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
mpu.setDMPEnabled(true); // Enable DMP
packetSize = mpu.dmpGetFIFOPacketSize();
dmpReady = true; // Enable interrupt.
*/
//pc.printf("Init finish!\n");
return true;
}
int MG_ACT(int state)
{
// int ret;
if (state == 1){ //MAG_ON
// if (sensorState == 0){ //Battery on-position
//Lock triggrt
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_0 = 0;
DO_1 = 1;
DO_2 = 0;
wait_ms(500);
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
// if Battery is off, then do turn on
// if (BMS_state == 0){
//BMS ON
DO_3 = 1;
wait(4);
DO_3 = 0;
// }
return 1;
// }
}
else if (state == 2){//MAG_OFF
// if Battery is on, then do trun off
// if (BMS_state == 1){
//BMS ON
DO_3 = 1;
wait(4);
DO_3 = 0;
// }
//unLock triggrt
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_0 = 1;
DO_1 = 0;
DO_2 = 0;
DO_0 = 1;
DO_1 = 0;
DO_2 = 1;
wait_ms(500);
DO_0 = 1;
DO_1 = 0;
DO_2 = 0;
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
return 1;
}
return 0;
}
//=======================================================
int main() {
RS232.baud(PC_BAUDRATE);
MBED_ASSERT(Init() == true);
CANMessage rxMsg;
DI_0.mode(PullUp);
CAN_T = 0;
CAN_R = 0;
wait_ms(50);
CAN can1(D15,D14);//PB_8,PB_9); // CAN Rx pin name, CAN Tx pin name
wait_ms(50);
can1.frequency(500000);
wait_ms(50);
//Lock triggrt
wait_ms(500);
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_0 = 0;
DO_1 = 1;
DO_2 = 0;
wait_ms(500);
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
wait_ms(500);
while(1){
seq++;
motor_seq = seq;
t.start();
//================================
//========define ACT_state return code============================================
//#define Satndby 0x00
//#define Busy 0x01
//#define Sensor_error 0x10
//========================================================
counter++;
state_code = State;
switch (State){
int ret;
case IDLE:
counter = 0;
break;
case WAIT_BAT:
if (sensorState == 0){
State = ACT_MG_ON;
counter = 0;
}
if (counter>1000){
State = IDLE;
error_code = Sensor_error;
}
break;
case ACT_MG_ON:
ret = MG_ACT(1);
if (ret){
// DO_4 = 0;
State = Check_BMS_ON;
counter = 0;
}
if (counter>10){
State = IDLE;
error_code = Sensor_error;
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_3 = 0;
DO_4 = 0;
}
break;
case Check_BMS_ON:
if (BMS_state == 1){
// turn on parrel wire to share the UPS current
DO_4 = 1;
State = IDLE;
error_code = 0;
}
if (counter>100){
State = IDLE;
error_code = BMS_error;
DO_0 = 0;
DO_1 = 0;
DO_2 = 0;
DO_3 = 0;
DO_4 = 0;
}
break;
case ACT_MG_OFF:
// turn off parrel wire to avoid voltage feedback to UPS
DO_4 = 0;
ret = MG_ACT(2);
if (ret){
State = Check_BMS_OFF;
counter = 0;
}
if (counter>10){
State = IDLE;
error_code = Sensor_error;
}
break;
case Check_BMS_OFF:
if (BMS_state == 0){
State = IDLE;
error_code = 0;
}
if (counter>100){
State = IDLE;
error_code = BMS_error;
}
break;
}
ACT_state.data = state_code;
ACT_state_pub.publish( &ACT_state);
wait_ms(10);
Error_state.data = error_code;
Error_state_pub.publish( &Error_state);
wait_ms(10);
//============DI==================
int reading = DI_0;
if (reading == lastsensorState) {
db_conter = db_conter+1;
}
else{
db_conter = 0;
}
if (db_conter > 3) {
sensorState = reading;
DI.data = sensorState;
}
lastsensorState = reading;
DI_pub.publish( &DI);
wait_ms(10);
//=========================================
if (can1.read(rxMsg) && (t.read_ms() > 5000)) {
if(rxMsg.id == CAN_DATA){
BMS_state = 1;
SOC = rxMsg.data[0]>>1;
Tempert = rxMsg.data[1]-50;
RackVoltage = ((unsigned int)rxMsg.data[3] << 8) + (unsigned int)rxMsg.data[2];
Current = ((unsigned int)rxMsg.data[5] << 8) + (unsigned int)rxMsg.data[4];
MaxCellV = rxMsg.data[6];
MinCellV = rxMsg.data[7];
BTState.header.stamp = nh.now();
BTState.header.frame_id = 0;
BTState.header.seq = seq;
BTState.voltage = RackVoltage*0.1;
BTState.current = Current;
BTState.design_capacity = 80;
BTState.percentage = SOC;
BT_pub.publish( &BTState );
t.reset();
} // if
} // if
else{
BMS_state = 0;
}
if (motor_seq > motor_old_seq + 5){
motor_rpm_r = 0;
motor_rpm_l = 0;
}
Sendmessage(motor_rpm_l,motor_rpm_r);
wait_ms(70);
//wait_ms(100);
nh.spinOnce();
}
}
