For nucleoF103 change sda,scl to PB_7,PB_6 Finish Delta Servo control with RS485, and IMU6050
Dependencies: MPU6050-DMP mbed ros_lib_kinetic
Fork of MPU6050_DMP_test_for1549 by
main.cpp
- Committer:
- WeberYang
- Date:
- 2018-04-12
- Revision:
- 2:648583d6e41a
- Parent:
- 0:6e61e8ec4b42
File content as of revision 2:648583d6e41a:
/*
*/
#include "MPU6050_6Axis_MotionApps20.h"
#include "mbed.h"
//#include "CANMsg.h"
#include "I2Cdev.h"
#include "MPU6050.h"
#include <ros.h>
#include <ros/time.h>
#include <std_msgs/Empty.h>
#include <std_msgs/String.h>
#include <std_msgs/Float32.h>
#include <sensor_msgs/BatteryState.h>
#include <geometry_msgs/Twist.h> //set buffer larger than 50byte
#include <math.h>
#include <stdio.h>
#include <tiny_msgs/tinyVector.h>
#include <tiny_msgs/tinyIMU.h>
#define Start 0xAA
#define Address 0x7F
#define ReturnType 0x00
#define Clean 0x00
#define Reserve 0x00
#define End 0x55
#define Motor1 1
#define Motor2 2
//Serial pc(PA_2, PA_3,9600);
Serial RS485(PA_9, PA_10);
DigitalOut RS485_E(D7); //RS485_E
DigitalOut myled(LED1);
MPU6050 mpu;//(PB_7,PB_6); // sda, scl pin
tiny_msgs::tinyIMU imu_msg;
std_msgs::String str_msg;
std_msgs::Float32 VelAngular_L;
std_msgs::Float32 VelAngular_R;
ros::NodeHandle nh;
ros::Publisher imu_pub("tinyImu", &imu_msg);
ros::Publisher pub_lmotor("pub_lmotor", &VelAngular_L);
ros::Publisher pub_rmotor("pub_rmotor", &VelAngular_R);
uint32_t seq;
#define IMU_FIFO_RATE_DIVIDER 0x09
#define IMU_SAMPLE_RATE_DIVIDER 4
#define MPU6050_GYRO_FS MPU6050_GYRO_FS_2000
#define MPU6050_ACCEL_FS MPU6050_ACCEL_FS_2
#define PC_BAUDRATE 115200
#define DEG_TO_RAD(x) ( x * 0.01745329 )
#define RAD_TO_DEG(x) ( x * 57.29578 )
const int FIFO_BUFFER_SIZE = 128;
uint8_t fifoBuffer[FIFO_BUFFER_SIZE];
uint16_t fifoCount;
uint16_t packetSize;
bool dmpReady;
uint8_t mpuIntStatus;
const int snprintf_buffer_size = 100;
char snprintf_buffer[snprintf_buffer_size];
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };
int16_t ax, ay, az;
int16_t gx, gy, gz;
float Lrpm,Rrpm;
float ticks_since_target;
double timeout_ticks;
double w;
double rate;
double Dimeter;
float dx,dy,dr;
struct Offset {
int16_t ax, ay, az;
int16_t gx, gy, gz;
}offset = {150, -350, 1000, -110, 5, 0}; // Measured values
struct MPU6050_DmpData {
Quaternion q;
VectorFloat gravity; // g
float roll, pitch, yaw; // rad
}dmpData;
long map(long x, long in_min, long in_max, long out_min, long out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
//==========define sub function========================
bool Init();
void dmpDataUpdate();
unsigned int CRC_Verify(unsigned char *cBuffer, unsigned int iBufLen);
void setAddress(char MotorAddress,int16_t DataAddress,int16_t Data);
void SVON(char MotorStation);
void SVOFF(char MotorStation);
int myabs( int a );
void TwistToMotors();
//===================================================
bool Init() {
//pc.baud(PC_BAUDRATE);
// pc.printf("Init.\n");
seq = 0;
//while(!pc.readable());
// pc.getc();
nh.initNode();
mpu.initialize();
if (mpu.testConnection()) {
// pc.printf("MPU6050 test connection passed.\n");
} else {
// pc.printf("MPU6050 test connection failed.\n");
return false;
}
if (mpu.dmpInitialize() == 0) {
// pc.printf("succeed in MPU6050 DMP Initializing.\n");
} else {
// pc.printf("failed in MPU6050 DMP Initializing.\n");
return false;
}
mpu.setXAccelOffset(offset.ax);
mpu.setYAccelOffset(offset.ay);
mpu.setZAccelOffset(offset.az);
mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_2000);
mpu.setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
mpu.setXGyroOffsetUser(offset.gx);
mpu.setYGyroOffsetUser(offset.gy);
mpu.setZGyroOffsetUser(offset.gz);
mpu.setDMPEnabled(true); // Enable DMP
packetSize = mpu.dmpGetFIFOPacketSize();
dmpReady = true; // Enable interrupt.
//pc.printf("Init finish!\n");
return true;
}
//======================= motor =================================================
unsigned int CRC_Verify(unsigned char *cBuffer, unsigned int iBufLen)
{
unsigned int i, j;
//#define wPolynom 0xA001
unsigned int wCrc = 0xffff;
unsigned int wPolynom = 0xA001;
/*---------------------------------------------------------------------------------*/
for (i = 0; i < iBufLen; i++)
{
wCrc ^= cBuffer[i];
for (j = 0; j < 8; j++)
{
if (wCrc &0x0001)
{
wCrc = (wCrc >> 1) ^ wPolynom;
}
else
{
wCrc = wCrc >> 1;
}
}
}
return wCrc;
}
void setAddress(char MotorAddress,int16_t DataAddress,int16_t Data)
{
unsigned char sendData[8];
int16_t tmpCRC;
//char MotorAddress;
char Function;
//int DataAddress,Data;
char DataAddressH,DataAddressL;
char dataH,dataL;
int i;
sendData[6] = 0xff;
sendData[7] = 0xff;
//MotorAddress = address;
Function = 0x06;
//DataAddress = data;
//Data = 0x0001;
DataAddressH = ((DataAddress>>8)&0xFF);
DataAddressL = ((DataAddress>>0)&0xFF);
dataH = ((Data>>8)&0xFF);
dataL = ((Data>>0)&0xFF);
sendData[0] = MotorAddress;
sendData[1] = Function;
sendData[2] = DataAddressH;
sendData[3] = DataAddressL;
sendData[4] = dataH;
sendData[5] = dataL;
tmpCRC = CRC_Verify(sendData, 6);
sendData[6] = (tmpCRC & 0xFF);
sendData[7] = (tmpCRC>>8);
RS485_E = 1;
wait_ms(10);
for (i=0;i<8;i++)
{
RS485.printf("%c",sendData[i]);
}
wait_ms(10);
RS485_E = 0;
//===========================================
}
void SVON(char MotorStation)
{
//void setAddress(char MotorAddress,int16_t DataAddress,int16_t Data)
setAddress(MotorStation,0x0214,0x0100);
}
void SVOFF(char MotorStation)
{
//void setAddress(char MotorAddress,int16_t DataAddress,int16_t Data)
setAddress(MotorStation,0x0214,0x0101);
wait_ms(10);
}
int myabs( int a ){
if ( a < 0 ){
return -a;
}
return a;
}
void TwistToMotors()
{
seq = seq + 1;
//int lower_bound = 100;
//int upper_bound = 300;
float right,left;
float motor_rpm_r, motor_rpm_l;
//double vel_data[2];
int16_t Lrpm,Rrpm;
float vel_data[2];
w = 0.302;//0.2 ;//m
rate = 20;//50;
timeout_ticks = 2;
Dimeter = 0.127;//0.15;
// prevent agv receive weird 1.0 command from cmd_vel
if (dr == 1.0){
dr = 0.001;
}
//
right = ( 1.0 * dx ) + (dr * w /2);
left = ( 1.0 * dx ) - (dr * w /2);
motor_rpm_r = right*rate/(Dimeter/2)*60/(2*3.1416);
motor_rpm_l = left*rate/(Dimeter/2)*60/(2*3.1416);
vel_data[0] = motor_rpm_r;
vel_data[1] = motor_rpm_l;
Lrpm = motor_rpm_l;
Rrpm = motor_rpm_r;
setAddress(Motor1,0x0112,Lrpm);
setAddress(Motor2,0x0112,Rrpm);
VelAngular_R.data = vel_data[0];
VelAngular_L.data = vel_data[1];
//if(VelAngular_R.data >2000 || VelAngular_L.data>2000){
//}
//else{
// pub_rmotor.publish( &VelAngular_R );
// pub_lmotor.publish( &VelAngular_L );
//}
//pc.printf("Wr = %.1f\n",vel_data[0]);
//pc.printf("Wl = %.1f\n",vel_data[1]);
ticks_since_target += 1;
}
void messageCb(const geometry_msgs::Twist &msg)
{
ticks_since_target = 0;
dx = msg.linear.x;
dy = msg.linear.y;
dr = msg.angular.z;
TwistToMotors();
}
ros::Subscriber<geometry_msgs::Twist> cmd_vel_sub("cmd_vel", &messageCb);
//======================================================================================
//
void dmpDataUpdate() {
// Check that this interrupt has enabled.
if (dmpReady == false) return;
mpuIntStatus = mpu.getIntStatus();
fifoCount = mpu.getFIFOCount();
// Check that this interrupt is a FIFO buffer overflow interrupt.
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
mpu.resetFIFO();
//pc.printf("FIFO overflow!\n");
return;
// Check that this interrupt is a Data Ready interrupt.
} else if (mpuIntStatus & 0x02) {
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
mpu.getFIFOBytes(fifoBuffer, packetSize);
#ifdef OUTPUT_QUATERNION
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Quaternion : w=%f, x=%f, y=%f, z=%f\n", dmpData.q.w, dmpData.q.x, dmpData.q.y, dmpData.q.z ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
#ifdef OUTPUT_EULER
float euler[3];
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
mpu.dmpGetEuler(euler, &dmpData.q);
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Euler : psi=%fdeg, theta=%fdeg, phi=%fdeg\n", RAD_TO_DEG(euler[0]), RAD_TO_DEG(euler[1]), RAD_TO_DEG(euler[2]) ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
#ifdef OUTPUT_ROLL_PITCH_YAW
mpu.dmpGetQuaternion(&dmpData.q, fifoBuffer);
mpu.dmpGetGravity(&dmpData.gravity, &dmpData.q);
float rollPitchYaw[3];
mpu.dmpGetYawPitchRoll(rollPitchYaw, &dmpData.q, &dmpData.gravity);
dmpData.roll = rollPitchYaw[2];
dmpData.pitch = rollPitchYaw[1];
dmpData.yaw = rollPitchYaw[0];
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Roll:%6.2fdeg, Pitch:%6.2fdeg, Yaw:%6.2fdeg\n", RAD_TO_DEG(dmpData.roll), RAD_TO_DEG(dmpData.pitch), RAD_TO_DEG(dmpData.yaw) ) < 0 ) return;
pc.printf(snprintf_buffer);
#ifdef servotest
int servoPulse = map((long)(RAD_TO_DEG(dmpData.yaw)*100), -9000, 9000, 500, 1450);
if(servoPulse > 1450) servoPulse = 1450;
if(servoPulse < 500) servoPulse = 500;
sv.pulsewidth_us(servoPulse);
#endif
#endif
#ifdef OUTPUT_FOR_TEAPOT
teapotPacket[2] = fifoBuffer[0];
teapotPacket[3] = fifoBuffer[1];
teapotPacket[4] = fifoBuffer[4];
teapotPacket[5] = fifoBuffer[5];
teapotPacket[6] = fifoBuffer[8];
teapotPacket[7] = fifoBuffer[9];
teapotPacket[8] = fifoBuffer[12];
teapotPacket[9] = fifoBuffer[13];
for (uint8_t i = 0; i < 14; i++) {
pc.putc(teapotPacket[i]);
}
#endif
#ifdef OUTPUT_TEMPERATURE
float temp = mpu.getTemperature() / 340.0 + 36.53;
if ( snprintf( snprintf_buffer, snprintf_buffer_size, "Temp:%4.1fdeg\n", temp ) < 0 ) return;
pc.printf(snprintf_buffer);
#endif
// pc.printf("\n");
}
}
int main() {
RS485.baud(PC_BAUDRATE);
MBED_ASSERT(Init() == true);
nh.initNode();
nh.advertise(imu_pub);
// nh.advertise(pub_lmotor);
// nh.advertise(pub_rmotor);
nh.subscribe(cmd_vel_sub);
SVON(1);
SVON(2);
while(1)
{
seq++;
mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
imu_msg.header.stamp = nh.now();
imu_msg.header.frame_id = 0;
imu_msg.header.seq = seq;
imu_msg.accel.x = ax;
imu_msg.accel.y = ay;
imu_msg.accel.z = az;
imu_msg.gyro.x = gx;
imu_msg.gyro.y = gy;
imu_msg.gyro.z = gz;
imu_pub.publish( &imu_msg );
nh.spinOnce();
wait_ms(10);
//writing current accelerometer and gyro position
//pc.printf("%d;%d;%d;%d;%d;%d\r\n",ax,ay,az,gx,gy,gz);
}
}
