Tom Martins
/
Probleme_implementation_lwip2
test public
Fork of Probleme_implementation_lwip by
ethernetif.cpp
- Committer:
- TomTom83
- Date:
- 2018-07-02
- Revision:
- 2:9e76d51d9fb6
- Parent:
- 1:a3ee8cb24540
File content as of revision 2:9e76d51d9fb6:
/** * @file * Ethernet Interface for standalone applications (without RTOS) - works only for * ethernet polling mode (polling for ethernet frame reception) * */ /* * Copyright (c) 2001-2004 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels <adam@sics.se> * */ #include "lwip/mem.h" #include "netif/etharp.h" #include "ethernetif.h" #include "main.h" #include <string.h> /* Network interface name */ #define IFNAME0 's' #define IFNAME1 't' /* Ethernet Rx & Tx DMA Descriptors */ extern ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB]; /* Ethernet Driver Receive buffers */ extern uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE]; /* Ethernet Driver Transmit buffers */ extern uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE]; /* Global pointers to track current transmit and receive descriptors */ extern ETH_DMADESCTypeDef *DMATxDescToSet; extern ETH_DMADESCTypeDef *DMARxDescToGet; /* Global pointer for last received frame infos */ extern ETH_DMA_Rx_Frame_infos *DMA_RX_FRAME_infos; /** * In this function, the hardware should be initialized. * Called from ethernetif_init(). * * @param netif the already initialized lwip network interface structure * for this ethernetif */ static void low_level_init(struct netif *netif) { #ifdef CHECKSUM_BY_HARDWARE int i; #endif /* set MAC hardware address length */ netif->hwaddr_len = ETHARP_HWADDR_LEN; /* set MAC hardware address */ netif->hwaddr[0] = MAC_ADDR0; netif->hwaddr[1] = MAC_ADDR1; netif->hwaddr[2] = MAC_ADDR2; netif->hwaddr[3] = MAC_ADDR3; netif->hwaddr[4] = MAC_ADDR4; netif->hwaddr[5] = MAC_ADDR5; /* initialize MAC address in ethernet MAC */ ETH_MACAddressConfig(ETH_MAC_Address0, netif->hwaddr); /* maximum transfer unit */ netif->mtu = 1500; /* device capabilities */ /* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */ netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP; /* Initialize Tx Descriptors list: Chain Mode */ ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB); /* Initialize Rx Descriptors list: Chain Mode */ ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB); #ifdef CHECKSUM_BY_HARDWARE /* Enable the TCP, UDP and ICMP checksum insertion for the Tx frames */ for(i=0; i<ETH_TXBUFNB; i++) { ETH_DMATxDescChecksumInsertionConfig(&DMATxDscrTab[i], ETH_DMATxDesc_ChecksumTCPUDPICMPFull); } #endif /* Note: TCP, UDP, ICMP checksum checking for received frame are enabled in DMA config */ /* Enable MAC and DMA transmission and reception */ ETH_Start(); } /** * This function should do the actual transmission of the packet. The packet is * contained in the pbuf that is passed to the function. This pbuf * might be chained. * * @param netif the lwip network interface structure for this ethernetif * @param p the MAC packet to send (e.g. IP packet including MAC addresses and type) * @return ERR_OK if the packet could be sent * an err_t value if the packet couldn't be sent * * @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to * strange results. You might consider waiting for space in the DMA queue * to become availale since the stack doesn't retry to send a packet * dropped because of memory failure (except for the TCP timers). */ static err_t low_level_output(struct netif *netif, struct pbuf *p) { struct pbuf *q; int framelength = 0; u8 *buffer = (u8 *)(DMATxDescToSet->Buffer1Addr); /* copy frame from pbufs to driver buffers */ for(q = p; q != NULL; q = q->next) { memcpy((u8_t*)&buffer[framelength], q->payload, q->len); framelength = framelength + q->len; } /* Note: padding and CRC for transmitted frame are automatically inserted by DMA */ /* Prepare transmit descriptors to give to DMA*/ ETH_Prepare_Transmit_Descriptors(framelength); return ERR_OK; } /** * Should allocate a pbuf and transfer the bytes of the incoming * packet from the interface into the pbuf. * * @param netif the lwip network interface structure for this ethernetif * @return a pbuf filled with the received packet (including MAC header) * NULL on memory error */ static struct pbuf * low_level_input(struct netif *netif) { struct pbuf *p, *q; u16_t len; int l =0; FrameTypeDef frame; u8 *buffer; uint32_t i=0; __IO ETH_DMADESCTypeDef *DMARxNextDesc; p = NULL; /* get received frame */ frame = ETH_Get_Received_Frame(); /* Obtain the size of the packet and put it into the "len" variable. */ len = frame.length; buffer = (u8 *)frame.buffer; /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */ p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); /* copy received frame to pbuf chain */ if (p != NULL) { for (q = p; q != NULL; q = q->next) { memcpy((u8_t*)q->payload, (u8_t*)&buffer[l], q->len); l = l + q->len; } } /* Release descriptors to DMA */ /* Check if frame with multiple DMA buffer segments */ if (DMA_RX_FRAME_infos->Seg_Count > 1) { DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc; } else { DMARxNextDesc = frame.descriptor; } /* Set Own bit in Rx descriptors: gives the buffers back to DMA */ for (i=0; i<DMA_RX_FRAME_infos->Seg_Count; i++) { DMARxNextDesc->Status = ETH_DMARxDesc_OWN; DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr); } /* Clear Segment_Count */ DMA_RX_FRAME_infos->Seg_Count =0; /* When Rx Buffer unavailable flag is set: clear it and resume reception */ if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET) { /* Clear RBUS ETHERNET DMA flag */ ETH->DMASR = ETH_DMASR_RBUS; /* Resume DMA reception */ ETH->DMARPDR = 0; } return p; } /** * This function should be called when a packet is ready to be read * from the interface. It uses the function low_level_input() that * should handle the actual reception of bytes from the network * interface. Then the type of the received packet is determined and * the appropriate input function is called. * * @param netif the lwip network interface structure for this ethernetif */ err_t ethernetif_input(struct netif *netif) { err_t err; struct pbuf *p; /* move received packet into a new pbuf */ p = low_level_input(netif); /* no packet could be read, silently ignore this */ if (p == NULL) return ERR_MEM; /* entry point to the LwIP stack */ err = netif->input(p, netif); if (err != ERR_OK) { LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n")); pbuf_free(p); p = NULL; } return err; } /** * Should be called at the beginning of the program to set up the * network interface. It calls the function low_level_init() to do the * actual setup of the hardware. * * This function should be passed as a parameter to netif_add(). * * @param netif the lwip network interface structure for this ethernetif * @return ERR_OK if the loopif is initialized * ERR_MEM if private data couldn't be allocated * any other err_t on error */ err_t ethernetif_init(struct netif *netif) { LWIP_ASSERT("netif != NULL", (netif != NULL)); #if LWIP_NETIF_HOSTNAME /* Initialize interface hostname */ netif->hostname = "RAIMA"; #endif /* LWIP_NETIF_HOSTNAME */ strncpy(netif->name,"RAIMA",5); /* We directly use etharp_output() here to save a function call. * You can instead declare your own function an call etharp_output() * from it if you have to do some checks before sending (e.g. if link * is available...) */ netif->output = etharp_output; netif->linkoutput = low_level_output; /* initialize the hardware */ low_level_init(netif); return ERR_OK; }