Dual CANbus monitor and instrumentation cluster. Presently tuned for the Nissan Leaf EV.

Dependencies:   SPI_TFTx2_ILI9341 TFT_fonts TOUCH_TFTx2_ILI9341 mbed

Fork of CANary_corrupt by Tick Tock

After adding the LPC1768 platform, import as a program and do not select the "update to latest revision" box

User Guide

Eagle Schematic and Board design

/media/uploads/TickTock/canaryr6.zip

/media/uploads/TickTock/canary_sch.jpg

/media/uploads/TickTock/canaryr6brd.jpg

For LCD Rev 1.01:

/media/uploads/TickTock/lcdsch.jpg

For VCD Rev 2.00:

/media/uploads/TickTock/lcdr2.jpg

Parts List

qtyinstancepart #packagesupplierDescription
1BAT3Vhttp://www.ebay.com/itm/10x-CR2032-SMD-Battery-Holder-for-CR2032-Battery-/180938057979?pt=LH_DefaultDomain_0&hash=item2a20bfa8fbLithium 2032 coin battery holder
4C1-C4ECST1DC106R6032Tantalium capacitor 10uF
3FC1-FC3ZF1-20-01-T-WThttp://www.samtec.com/cable-systems/idc-ffc/ffc/zero-insertion.aspx20 conductor 1mm pitch flex cable connector (optional)
1FJ-20-R-08.00-4http://www.samtec.com/cable-systems/idc-ffc/ffc/zero-insertion.aspx8\" 20 conductor 1mm pitch flex connector, end reversed (optional)
2H1-H4(DON'T populate H1-H4 headers - solder mbed directly)
1H5http://www.ebay.com/itm/221186042943?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l26491x12 .1\" pitch header (optional)
1H62x6 .1\" pitch header (optional)
2IC1,IC2VP230LMDSOP8http://www.ebay.com/itm/130488665247?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l2649canbus transciever
1IC3LM1117-5VSOT2235V regulator
5JP*2 pin .1\" jumper header
1mbedLPC1768http://www.ebay.com/itm/200830573509?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l2649mbed uC
2Q1,Q22N2222SOT23General purpose NPN transistor
1R1R393M120639K resistor
1R2R103M120610K resistor
4R4-R6R102M12061K resistor
1R3R500M120650 Ohm resistor
2TR1-TR5ZJYS81R5-2PL51TG01http://www.digikey.com/product-detail/en/ZJYS81R5-2PL51T-G01/445-2223-1-ND/765232CM Choke
1Z11N5340BGC1702-15http://www.ebay.com/itm/150878122425?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l26496V, 5W Zener Diode
1Z1DC-DC conveterhttp://www.ebay.com/itm/251142727849?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l264912V-7V, 3W DC-DC converter
1X1USBhttp://www.ebay.com/itm/New-Vertical-USB-2-0-A-pcb-connector-socket-USB-A-Type-/300553895292?pt=LH_DefaultDomain_0&hash=item45fa687d7cvertical USB connector
2LCD0,LCD1TFThttp://www.mikroe.com/add-on-boards/display/tft-proto/320x240 LCD with touch screen
1E0Enclosurehttp://www.shapeways.com/model/1077799/canary.html?li=user-profile&materialId=63d printed enclosure

Assembly

1) LCD Displays

I found ribbon cable is a nice way to organize the wires to the displays. There are two versions of the display and each must be wired differently. The original project used HW REV. 1.01. For that version, you'll need 12 conductors and I connected them in the following order:

1LED+
2LED-
3RST
4SDI
5WR/SCLK
6CS
7X+
8X-
9Y+
10Y-
11VDD
12GND

If, instead, you have HW REV 2.0, you will need 13 conductors with the following order:

1LED+
2LED-
3RST
4SDI
5RS (SCLK)
6WR (DC)
7CS
8X+
9X-
10Y+
11Y-
12VDD
13GND

First I connected all the GND connections (2 GND & IM0, IM1, IM3 for REV1.01 or 2 GND, RD, & IM0 for REV2.00). Do not connect the bottom GND until you have the ribbon cable connected. After making all the ribbon cable connections (connecting the GND of the ribbon cable to the bottom GND pad), solder the GND bar from the previous step to the back of the bottom GND connection. Finally, make a connection from the back side 3.3V pin to IM2 for REV1.01 or to IM1,IM2,&IM3 for REV2.00. Take a break and repeat for the second display.

Examples of REV1.01 boards:

/media/uploads/TickTock/lcdtop.jpg /media/uploads/TickTock/lcdbot.jpg

Examples of REV2.00:

/media/uploads/TickTock/rev2front.jpg /media/uploads/TickTock/rev2back.jpg

Once the two displays are complete combine all wires except CS0, CS1, X+, X-, Y+, and Y-. Connect X- of the left display to X+ of the right. Similarly connect Y- of the left display to Y+ of the right. Insulate any exposed wires.

2) PCB

Refer to the schematics to place all the components on the board. If you plan to install into the CANary 3D enclosure, DO NOT install the battery holder or the socket for the mbed and, instead, connect two wires to the VB and GND pads nearby. You will have to install the battery holder against the back wall to avoid interfering with the right-hand display and the mbed will have to be directly soldered. I have not found a socket with a low enough profile to fit in the space provided (depth of enclosure is limited by the space behind the center console). Also, I recommend keeping as much lead as possible on the Zener diode (bending it as shown to clear the back wall). Although it is operating well within parameters, the Zener gets quite hot during extended operation and the leads help dissipate the heat and keep it away from the PCB and other components.Update: Several Zeners have failed resulting in damage to some users boards so I recommend using a DC-DC converter instead to bring the 12V down to 7V.

/media/uploads/TickTock/pcbtop.jpg /media/uploads/TickTock/pcbbot.jpg

Once the PCB is populated, solder the LCDs to the PCB. CS0 connects to the right display and CS1 connects to the left. /media/uploads/TickTock/brddis.jpg

Update: The Zener diodes tended to fail after a few months so I am recommending removing them and replacing with a DC-DC converter. This will run cooler and waste less energy, too. To install, remove the left display panel to gain access to the Zener. From there, the Zener can be removed and it's pads used to connect to the DC-DC converter. I recommend setting the output voltage on the bench before installing since the trim pot is tricky to reach once installed. Set it to 7V. The input can be connected to the left pad previously occupied by the zener and the output can connect to the right. GND(-) can be connected to the bottom right pad on the 2x6 header below the flex cable connector. Make sure the GND wire lies flat so it doesn't interfere with the connection of the flex cable. /media/uploads/TickTock/dcdcinst2.jpg

Once soldered in place, the DC-DC converter can easily be mounted to the back wall with double sided tape above the battery holder. /media/uploads/TickTock/dcdcinst3.jpg

3) Testing

1)First step is to buzz out all connections from the LCDs to the pins in the main board
2)Next check the touch screen connections. On the main board, place an Ohm meter across X+ and X-. You should read 700 Ohms. Repeat for Y+ and Y-. Then test the resistance from X+ to Y+. With nothing touching the screens, it should read >100K Ohms and <1K when touching either screen.
3)When all connections are checked, solder in the mbed. Download and install the touch2 program http://mbed.org/users/TickTock/code/touch2/ to test the basic operation of the mbed and touch screens.
tips:
Touch screen is sensitive - excess flux on X+,X-,Y+,Y- connection on mbed can result in flakey operation
If touch is not working, double-check the LCD0_CS and LCD1_CS are not swapped. LCD0_CS must connect to the CS of the LCD that has X- & Y- connected to the mbed. LCD1_CS must connect to the CS of the LCD that has X+ & Y+ connected to the mbed.
4)Once touch2 works, it is time to connect to the OBD connector. I highly recommend double checking all connections from the OBD to the PCB with the cable in place before connecting to the Leaf. Buzz out all the pins in the OBS to make sure none are shorting to each other, Check that the 12V goes to the Zener (and nothing else) and the switched 12V to the resistor divider (and nothing else). Test the ground connection properly connects to ground and nothing else.
5)Once you are confident there are no shorts or wrong connections from the OBD connector, take a deep breath and plug it into your leaf. Touch2 program should come up and function. Unplug and install the latest CANary firmware. If you have the REV2.00 LCD boards, you will need to edit the precompile.h file in the TOUCH_TFTx2_w9341 library and set USE_ILI9341 to 1. Test all features before installing into the enclosure (gids, cellpair, menu system, logging) since installing and removing from the enclosure is a PITA.

/media/uploads/TickTock/pcbdone.jpg /media/uploads/TickTock/functioning.jpg

4) Enclosure

The 3D printer leaves a lot of powder behind - I used a strong spray of water to get it out of all the cracks. The enclosure comes with a rather rough finish. I recommend convincing yourself you like it, then simply lightly sand then paint before assembly. Sanding is very difficult - the nylon is very nicely fused and doesn't want to sand. I tried sandblasting and that didn't work either. I had some limited success with filler and then sanding, but only on the outside - it is too difficult to sand the face. /media/uploads/TickTock/enclosure.jpg

5) Final Assembly

Make sure you are well rested with lots of patience before attempting assembly. It is a puzzle figuring out how to get both displays and the PCB in place. Enclosure was too expensive for me to keep iterating to optimize for assembly. I ended up snipping the thin display posts shorter and using various tools to push the displays into place. Also, some USB connectors are taller than others. If you have one of the taller ones, you will have to deflect the back wall a bit while inserting the PCB (being careful not to bend the housing) to get it to it's opening in the back wall. Do use a screw in the provided post to secure the PCB as USB insertion will otherwise dislodge it.

I added an additional safety line which wraps around the center post to prevent the enclosure from becoming a projectile in the event of an accident. /media/uploads/TickTock/safety.jpg Installed: /media/uploads/TickTock/installed.jpg

utility.cpp

Committer:
TickTock
Date:
2015-07-01
Revision:
208:bfb6b68d1677
Parent:
207:411cdca211aa

File content as of revision 208:bfb6b68d1677:

// utility.cpp
#include "utility.h"
unsigned long brkMonRate = 378947;
unsigned short brkMonThr = 1895;
Timeout beepOff;
unsigned char bCount = 2;
float bFreq[2] = { 1000, 1000 };
float bTime[2] = { 0.1, 0.1 };

void mbed_reset();

void RTC_IRQHandler() {
    timer.reset(); // zero ms at the-seconds-tic
    //carCanIdle=(++secsNoCarCanMsg>canTimeout)?true:false;
    //evCanIdle=(++secsNoEvCanMsg>canTimeout)?true:false;
    userIdle=(++secsNoTouch>userTimeout)?true:false;
    LPC_RTC->ILR |= (1<<0); // clear interrupt to prepare for next
    tick=true;
    // will use this to generate a logTP() just before the next Message received.
    if( (time(NULL) % 60) == 0) ZeroSecTick = true; // gg - at 0-second of each minute
}

void RTC_Init (void) {
    LPC_RTC->ILR=0x00; // set up the RTC interrupts
    LPC_RTC->CIIR=0x01; // interrupts each second
    LPC_RTC->CCR = 0x01;  // Clock enable
    //NVIC_SetPriority( RTC_IRQn, 10 );
    NVIC_EnableIRQ( RTC_IRQn );
}

void printMsg (char *msg) {
    strcpy(displayLog[displayLoc],msg);
    displayLoc=displayLoc>17?0:displayLoc+1;
}

void touch_ISR(){
    //LPC_GPIOINT->IO2IntClr = (LPC_GPIOINT->IO2IntStatR | LPC_GPIOINT->IO2IntStatF); // seems to work without so maybe not necessary (performed in InterruptIn handler?)
    touched=true; // just set flag - touch screen algorythm is long and we don't want to block other interrupts
}

unsigned short getTimeStamp() {
    unsigned short msec = timer.read_ms() ; // read ms from the timer
    unsigned long secs = time(NULL); // seconds past 12:00:00 AM 1 Jan 1900
    unsigned short isecs = secs%60 ; // modulo 60 for 0-59 seconds from RTC
    return ((isecs<<10)+msec) ; // return the two byte time stamp
}

void logCan (char mType, CANMessage canRXmsg) {

    static unsigned char ii = 0;
    static unsigned char lasti = 0; // indexindex
    static unsigned char bdi=0;
    static signed short imotorRPM = 0;
    static unsigned short nLost = 0; // gg - overrun
 
    char sTemp[40];    
    unsigned char changed;
    unsigned short i,j,k;
    signed short packV_x2;
    signed short packA_x2;
    signed long imWs_x4;
    unsigned short ts;

    if(debugMode||(skin==ggSkin)){ 
        // code to insert actual number of dropped frames for overrun debug - skipped in normal mode to keep logcan short
        if(logOpen){
            // check to see if buffer is already full (read - write) = 1
            // actually the last buffer location cannot be used because then 
            //   the buffer would look empty after writePointer++
            
            //if (((writePointer+maxBufLen-readPointer)%maxBufLen)>(maxBufLen/16)) // modulo is slow?
 
            // pointers are 0 through maxBufLen-1
            if( (readPointer - writePointer) == 1 || (writePointer - readPointer) == (maxBufLen - 1)) {
                // the buffer is "full", so Lose this message
                
                // point to the last-stored message
                int tempWritePointer = writePointer - 1 ;
                if( tempWritePointer < 0 ) tempWritePointer = maxBufLen - 1;
                char strLost[9] ;
 
                if( nLost == 0 ) {
                    // this is the first message lost 
                    //   and we must overwrite the last message with an FFE comment message
                    // So, there will be two messages lost as the comment message is laid in.
                    nLost = 2;
                    sprintf(strLost,"%s","Lost0002"); // indicate two messages lost
                    
                    // overlay the last message with a "Lost0002" comment
                    writeBuffer[tempWritePointer][0]=0;
                    // leave the ts of the overlaid message
                    //writeBuffer[tempWritePointer][1]=(ts&0xff00)>>8; // Time Stamp (2 bytes_
                    //writeBuffer[tempWritePointer][2]=(ts&0x00ff);
                    // force the MsgID to an Event Message 
                    writeBuffer[tempWritePointer][3]=0xfe; // MsgID, low byte
                    writeBuffer[tempWritePointer][4]=0xff; // Len nibble, and MsgID high nibble
                    // lay in the "Lost0002" text
                    for(i=5;i<13;i++){ 
                        writeBuffer[tempWritePointer][i]= strLost[i-5];
                    }
                } else {
                    // at least one message was previously lost
                    // increment the loat counter
                    nLost += 1;
                    
                    // lay the new count into the comment
                    sprintf(strLost,"%04d",nLost);
                    for(i=9;i<13;i++){ 
                        writeBuffer[tempWritePointer][i]= strLost[i-9];
                    }
                }
            } else {
                // there is room to insert the message
                // get it inserted quickly
                ts=getTimeStamp(); 
                writeBuffer[writePointer][0]=mType;
                writeBuffer[writePointer][1]=(ts&0xff00)>>8; // Time Stamp (2 bytes_
                writeBuffer[writePointer][2]=(ts&0x00ff);
                writeBuffer[writePointer][3]=canRXmsg.id&0xff; // MsgID, low byte
                char sLen = canRXmsg.len ;
                writeBuffer[writePointer][4]=(canRXmsg.id>>8)+(sLen<<4); // Len nibble, and MsgID high nibble
                for(i=0;i<8;i++){ // Is there a better way to do this? (writeBuffer[writePointer][i]=canRXmsg.data?)
                    if(i<sLen) 
                        writeBuffer[writePointer][i+5]=canRXmsg.data[i];
                    else // i>=sLen
                        // force unused data bytes to FF for CAN-Do compatibility
                        writeBuffer[writePointer][i+5]=0xFF;
                }
                
                //--------------
                // Note, this is not protected from the interrupt.
                // Due to the nLost code above, this no longer
                //    overflows to writePointer = readPointer
                //    which would make the buffer look empty
                if (++writePointer >= maxBufLen) {
                    writePointer = 0;
                    led3 = !led3;
                }
                //--------------
                // log a local message if we had lost messages. gg - logcan
                if( nLost > 0 ) {
                    // We previously lost messages that did not get into the buffer
                    sprintf(sTemp,"-- Lost %d Messages.\n", nLost);
                    printMsg(sTemp); // write buffer overrun
                    beep(500,0.25);
                    
                    nLost = 0 ;
                }
                //--------------
            }
        }
    }else{ // not debugMode - keep code short
        if(logOpen){
            NVIC_DisableIRQ(CAN_IRQn); // Block interrupts until write pointer assigned
            int localWritePointer = writePointer++; // create local copy to make logCan reentrant
            // note that the static variables do not prevent safe reentry
            // since they are only used for msgId<0x800 which will never interrupt
            // another msgId<0x800 (both CANbusses are same priority)
            if (writePointer >= maxBufLen) {
                writePointer = 0;
                led3 = !led3;
            }
            NVIC_EnableIRQ(CAN_IRQn); // Unblock interrupts once local pointer set and global pointer incremented
            ts=getTimeStamp();
            writeBuffer[localWritePointer][0]=mType;
            writeBuffer[localWritePointer][1]=(ts&0xff00)>>8;
            writeBuffer[localWritePointer][2]=(ts&0x00ff);
            writeBuffer[localWritePointer][3]=canRXmsg.id&0xff;
            writeBuffer[localWritePointer][4]=(canRXmsg.id>>8)+(canRXmsg.len<<4);
            for(i=5;i<13;i++){ // Is there a better way to do this?
                writeBuffer[localWritePointer][i]=canRXmsg.data[i-5];
            }
            if (writePointer==readPointer) {
                // Just caught up to read pointer
                printMsg("Write buffer overrun.\n"); // write buffer overrun
                //beep(500,0.25);
            }
        }
    }

    if(canRXmsg.id<0x800){ // Block FFE and FFF messages
        if(indexLastMsg[canRXmsg.id]==0) { //Check if no entry
            if(ii<99) {
                indexLastMsg[canRXmsg.id]=++ii; //Create entry for first MsgID occurance
                // ii max is 99 here
            } else {
                // the ii array is full, more than 100 MsgIDs found
                if(ii==99) {
                    ii++; // step to 100 to log only one error
                    printMsg("msgID buffer overrun.\n");
                    beep3(500,0.25,1000,0.5,500,0.25); //Alert driver to check log
                }
            }
        }
        lastMsg[indexLastMsg[canRXmsg.id]]=canRXmsg; //Store data in table at assigned index
        
        //----------------
        if(dMode[0]==changedScreen||dMode[1]==changedScreen){// Skip if not using (for execution speed)
            changed=msgChanged[indexLastMsg[canRXmsg.id]];
            // This is cleared in the main loop when reset button is touched
            for(i=0;i<8;i++){
                if(lastMsg[indexLastMsg[canRXmsg.id]].data[i]!=canRXmsg.data[i]){
                    changed |= 1<<i;
                }
            }
            msgChanged[indexLastMsg[canRXmsg.id]]=changed;
        }
        
        //-------------------
        //Miscellaneous on-recieve operations below
        if((mType==1)&&(canRXmsg.id==0x7bb)){ // is battery data?  Need to store all responses
            if(canRXmsg.data[0]<0x20){
                if(canRXmsg.data[3]==1){//Group 1 data
                    bdi=BatDataBaseG1; // index offset for Group 1 data
                    if(debugMode){
                        printMsg("  Getting Group 1 data\n");
                    }
                    
                }else if(canRXmsg.data[3]==2){//Group 2 = cellpair data
                    bdi=BatDataBaseG2; // index offset for CP data
                    if(debugMode){
                        printMsg("  Getting cell pair data\n");
                    }
                    
                }else if(canRXmsg.data[3]==3){//Group 3 data
                    bdi=BatDataBaseG3; // index offset for Group 3 data
                    if(debugMode){
                        printMsg("  Getting Group 3 data\n");
                    }
                    
                }else if(canRXmsg.data[3]==4){//Group 4 = temperature data
                    bdi=BatDataBaseG4; // index offset for Temperature data
                    if(debugMode){
                        printMsg("  Getting temperature data\n");
                    }
                    
                }else if(canRXmsg.data[3]==5){//Group 5 data
                    bdi=BatDataBaseG5; // index offset for Group 5 data
                    if(debugMode){
                        printMsg("  Getting Group 5 data\n");
                    }
                    
                }else if(canRXmsg.data[3]==6){//Group 6 data = shunt data
                    bdi=BatDataBaseG6; // index offset for Group 6 data
                    if(debugMode){
                        printMsg("  Getting Group 6 data\n");
                    }
                    
                }else bdi=0xff; // ignore other messages (for now)
                lasti=0;
            }
            
            if(bdi<0xff){
                i=canRXmsg.data[0]&0x0f; //lower nibble of D0 is index
                if(lasti>i){ //detect rollover and offset index appropriately
                    bdi += 0x10; // for CP data
                }
                lasti=i; //remember the msb to detect rollover next time around
                i+=bdi;
                //-------
                //-------
                i*=7;
                if(i+6 < BatDataBufMax) {
                    battData[i+0]=canRXmsg.data[1];
                    battData[i+1]=canRXmsg.data[2];
                    battData[i+2]=canRXmsg.data[3];
                    battData[i+3]=canRXmsg.data[4];
                    battData[i+4]=canRXmsg.data[5];
                    battData[i+5]=canRXmsg.data[6];
                    battData[i+6]=canRXmsg.data[7];
                }
                if(i==(BatDataBaseG6+3)*7){ // All data loaded
                    logCP=yesBattLog; // Only log if logging enabled
                    showCP=true; // Always show
                    
                    // Find hottest temperature by finding smallest ADC value
                    // 2013 models only have three sensors
                    k=battData[(BatDataBaseG4*7)+3]*0x100+battData[(BatDataBaseG4*7)+4];
                    j=battData[(BatDataBaseG4*7)+6]*0x100+battData[(BatDataBaseG4*7)+7];
                    if(j<k)k=j;
                    j=battData[(BatDataBaseG4*7)+9]*0x100+battData[(BatDataBaseG4*7)+10];
                    if(j<k)k=j;
                    j=battData[(BatDataBaseG4*7)+12]*0x100+battData[(BatDataBaseG4*7)+13];
                    if(j<k)k=j;
                    //interpolate from lookup table
                    unsigned short temp_adc[10] = {1000,720,690,589,487,401,365,340,309,000};
                    float            temp_C[10] = { -27,  0,  3, 13, 23, 32, 36, 39, 43, 76};
                    char ii=0;
                    while(k<=temp_adc[++ii]) { } // Find section in table
                    maxTemp=(float)(k-temp_adc[ii]);
                    maxTemp/=(float)(temp_adc[ii-1]-temp_adc[ii]);
                    maxTemp*=(temp_C[ii-1]-temp_C[ii]);
                    maxTemp+=temp_C[ii];

                    // Get state of health
                    SOH2_x100=battData[(BatDataBaseG1*7)+29]*0x100+battData[(BatDataBaseG1*7)+30];
                    Ah_x10000=battData[(BatDataBaseG1*7)+36]*0x10000+battData[(BatDataBaseG1*7)+37]*0x100+battData[(BatDataBaseG1*7)+38];
                    SOC_x10000=battData[(BatDataBaseG1*7)+32]*0x10000+battData[(BatDataBaseG1*7)+33]*0x100+battData[(BatDataBaseG1*7)+34];
                    accV2=(float)battData[(BatDataBaseG1*7)+23]/4+(float)battData[(BatDataBaseG1*7)+24]/1024;
                    
                    // Save shunt data
                    for(j=0; j<24; j++){
                        shunt[j*4+0]=battData[BatDataBaseG6*7+j+3]&0x08;
                        shunt[j*4+1]=battData[BatDataBaseG6*7+j+3]&0x04;
                        shunt[j*4+2]=battData[BatDataBaseG6*7+j+3]&0x02;
                        shunt[j*4+3]=battData[BatDataBaseG6*7+j+3]&0x01;
                    }
                }
            }
        }else if((mType==1)&&(canRXmsg.id==0x1db)){ //Battery Volts and Amps
            packV_x2=((canRXmsg.data[2]<<2)|(canRXmsg.data[3]>>6)); // 1 LSB = 0.5V
            packA_x2=((canRXmsg.data[0]<<3)|(canRXmsg.data[1]>>5)); // 1 LSB = 0.5A
            if(packA_x2>0x03ff){
                packA_x2|=0xf800;//extend sign;
            }
            packA_x2 -= 2; //Slight correction to value required (unique to my Leaf?)
            if (-packA_x2<Imin){
                Imin=-packA_x2;
            } else if (-packA_x2>Imax){
                Imax=-packA_x2;
            }
            imWs_x4 = packV_x2; // Volts*milliSeconds*2
            imWs_x4 *= -packA_x2; // milliWattseconds*4
            mWs_x4 += imWs_x4; // total mWs_x4
            float temp;
            temp = Resr;
            temp *= (float) -packA_x2;
            temp += (float) packV_x2;
            if(temp>curRmax){
                curRmax=temp;
            } else if(temp<curRmin){
                curRmin=temp;
            }
            temp = Resr-0.001;
            temp *= (float) -packA_x2;
            temp += (float) packV_x2;
            if(temp>redRmax){
                redRmax=temp;
            } else if(temp<redRmin){
                redRmin=temp;
            }
            temp = Resr+0.001;
            temp *= (float) -packA_x2;
            temp += (float) packV_x2;
            if(temp>incRmax){
                incRmax=temp;
            } else if(temp<incRmin){
                incRmin=temp;
            }
            numWsamples++;
        }else if((mType==2)&&(canRXmsg.id==0x176)){ //Motor Speed
            imotorRPM=((canRXmsg.data[2]<<8)|(canRXmsg.data[3]));
            motorRPM+=imotorRPM;
            numSsamples++;
//        }else if((mType==1)&&(canRXmsg.id==0x1da)){ //Motor Speed
//            imotorRPM_x2=((canRXmsg.data[4]<<8)|(canRXmsg.data[5]));
//            if(imotorRPM_x2<0){ // take absolute value
//                imotorRPM_x2=-imotorRPM_x2;
//            }
//            motorRPM_x2+=imotorRPM_x2;
//            numSsamples++;
//        }else if((mType==2)&&(canRXmsg.id==0x1ca)){ //Brake Pressure
        }else if((mType==2)&&(canRXmsg.id==0x292)){ //Brake Pressure
            if(brakeMon){
                if(canRXmsg.data[0]<0xff){
                    if((canRXmsg.data[6]*imotorRPM)<brkMonThr){ // brkMonThr = 3.6/.0019 = 1895 --> squelch threshold 1Wh/sec
                        chirpInt=0;
                    }else{ // imotorRPM*data[6]*.0019=kW; 3.6/kW = seconds until 1Wh;
                        chirpInt=brkMonRate/imotorRPM; // brkMonRate=3.6/.0019/.02=94736.8 --> 1 chirp per Wh
                        chirpInt/=canRXmsg.data[6];
                    }
                }
            }
        }
    }
}

//-----------------------------
void logTS () {
    CANMessage tsMsg;
    unsigned long secs = time(NULL); // seconds past 12:00:00 AM 1 Jan 1900
    // NOTE: In Mbed, I believe that this is seconds past start of 1970, not 1900
    //   but this is good, since seconds past 1970 is what CAN-Do expects. GG - Date Time
    tsMsg.id=0xfff;
    tsMsg.len=0xf;
    tsMsg.data[0]=secs&0xff; 
    tsMsg.data[1]=(secs>>8)&0xff;
    tsMsg.data[2]=(secs>>16)&0xff;
    tsMsg.data[3]=(secs>>24)&0xff;
    tsMsg.data[4]=0; // 0xff; gg - Date Time
    tsMsg.data[5]=0; // 0xff; for CAN-Do
    tsMsg.data[6]=0; // 0xff;
    tsMsg.data[7]=0xff;
    logCan(0,tsMsg); // Date-Time
}

void logEvent (char * errMsg) {
    // log CAN-Do 8-character Pseudo Message
    CANMessage tsMsg;
    tsMsg.id=0xffe; // pseudo Message to CAN-Do log
    tsMsg.len=0xf;
    int iMsgLen = strlen(errMsg);
    // 8 character message compatible with CAN-Do
    for(int i=0; i<8; i++){
      tsMsg.data[i]=' '; 
      if( i < iMsgLen ) tsMsg.data[i]=errMsg[i];
    }
    logCan(0,tsMsg); // FFE Comment Message
}

void sendReq() {
    static char data[8] = {0x02, 0x21, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff};
    if(reqMsgCnt<99){
        switch (reqMsgCnt){
            case BatDataBaseG1:
                can2.monitor(false); // set to active mode
                can2SleepMode = 0; // enable TX
                data[0]=0x02; //change to request group 1
                data[1]=0x21;
                data[2]=0x01;
                break;
            case BatDataBaseG2: // group 1 has 6 frames
                data[0]=0x02; //change to request group 2 (cp data)
                data[1]=0x21;
                data[2]=0x02;
                break;
            case BatDataBaseG3: // group 2 has 29 frames
                data[0]=0x02; //change to request group 3
                data[1]=0x21;
                data[2]=0x03;
                break;
            case BatDataBaseG4: // group 3 has 5 frames
                data[0]=0x02; //change to request group 4 (temperature)
                data[1]=0x21;
                data[2]=0x04;
                break;
            case BatDataBaseG5: // group 4 has 3 frames
                data[0]=0x02; //change to request group 5
                data[1]=0x21;
                data[2]=0x05;
                break;
            case BatDataBaseG6: // group 4 has 3 frames
                data[0]=0x02; //change to request group 5
                data[1]=0x21;
                data[2]=0x06;
                break;
            case BatDataBaseG7: // group 5 has 11 frames
                reqMsgCnt = 99;
                can2SleepMode = VP230Sleep; // disable TX
                can2.monitor(true); // set to snoop mode
                msgReq.detach(); // stop ticker
            default:
                data[0]=0x30; //change to request next line message
                data[1]=0x01;
                data[2]=0x00;
        }
        can2.write(CANMessage(0x79b, data, 8));
        reqMsgCnt++;
    }
}

void sendTempReq(){
    //Requests ambient and cabin temperature
    char data[8] = {0x03, 0x22, 0x11, 0x5d, 0xff, 0xff, 0xff, 0xff};
    can2.monitor(false); // set to active mode
    can2SleepMode = 0; // enable TX
    can2.write(CANMessage(0x797, data, 8));
    can2SleepMode = VP230Sleep; // disable TX
}

void autoPollISR(){
    //sendTempReq();
    reqMsgCnt = 0; //reset message counter
    msgReq.attach(&sendReq,0.015);
}

void playbackISR() { //Used for autoplayback
    step=true;
}

void recieve1() {
    CANMessage msg1;
    can1.read(msg1);
    
    secsNoEvCanMsg=0; // reset deadman switch
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second EV bus
    if(msg1.id>0) {
        logCan(1, msg1); // EVcan Message Received
        led1 = !led1;
    }
}

void recieve2() {
    CANMessage msg2;
    can2.read(msg2);
    
    secsNoCarCanMsg=0; // reset deadman switch
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second CAR bus    
    if(msg2.id>0) {
        logCan(2, msg2); // CARcan Message Received
        led2 = !led2;
    }
}

unsigned char buttonX(unsigned short X, unsigned char columns) {
    unsigned char val = X*columns/320;
    return val;
}

unsigned char buttonY(unsigned short Y, unsigned char rows) {
    unsigned short val = Y*rows/240;
    return val;
}

void saveConfig(){
    FILE *cfile;
    FIL efile; // external usb file
    FRESULT sfr; // external file access flags
    unsigned int bytesRW;
    const int bufSize = 2048;
    char buffer[bufSize];
    char sTemp[16];

    tt.set_font((unsigned char*) Arial12x12);
    tt.background(Blue);
    tt.foreground(Yellow);
    tt.locate(0,10);
    tt.cls();

    printMsg("Saving local config file.\n");
    printf("Saving local config file.\n");
    cfile = fopen("/local/config.txt", "w");    
    fprintf(cfile,"format 12\r\n");
    fprintf(cfile,"x0_off %d\r\n",tt.x0_off);
    fprintf(cfile,"y0_off %d\r\n",tt.y0_off);
    fprintf(cfile,"x0_pp %d\r\n",tt.x0_pp);
    fprintf(cfile,"y0_pp %d\r\n",tt.y0_pp);
    fprintf(cfile,"x1_off %d\r\n",tt.x1_off);
    fprintf(cfile,"y1_off %d\r\n",tt.y1_off);
    fprintf(cfile,"x1_pp %d\r\n",tt.x1_pp);
    fprintf(cfile,"y1_pp %d\r\n",tt.y1_pp);
    fprintf(cfile,"x_mid %d\r\n",tt.x_mid);
    if ((dMode[0]==configScreen)||(dMode[0]==config2Screen))
        fprintf(cfile,"dMode0 %d\r\n",mainScreen);
    else
        fprintf(cfile,"dMode0 %d\r\n",dMode[0]);
    if ((dMode[1]==configScreen)||(dMode[1]==config2Screen))
        fprintf(cfile,"dMode1 %d\r\n",mainScreen);
    else
        fprintf(cfile,"dMode1 %d\r\n",dMode[1]);
    fprintf(cfile,"ledHi %4.3f\r\n",ledHi);
    fprintf(cfile,"ledLo %4.3f\r\n",ledLo);
    fprintf(cfile,"pollInt %d\r\n",pollInt);
    fprintf(cfile,"scale12V %4.2f\r\n",scale12V);
    fprintf(cfile,"skin %d\r\n",skin);
    fprintf(cfile,"dtePeriod %d\r\n",dtePeriod);
    fprintf(cfile,"DebugMode %d\r\n",(debugMode?1:0));
    fprintf(cfile,"metric %d\r\n",(metric?1:0));
    fprintf(cfile, "firmware %d\r\n", fwCount );            
    fprintf(cfile,"showHealth %d\r\n",(showHealth?1:0));
    fprintf(cfile,"brakeMon %d\r\n",(heaterMon?4:0)+(regenMon?2:0)+(brakeMon?1:0));
    fprintf(cfile,"brkMonRate %2.1f\r\n", (float) brkMonRate/94737 );            
    fprintf(cfile,"brkMonThr %2.1f\r\n", (float) brkMonThr/1895);            
    for(char i=0;i<8;i++){
        sprintf(sTemp,"usrMsgId %04x",uMsgId[i]);
        fprintf(cfile,"%s\r\n", sTemp );
    }
    fprintf(cfile,"modelYear %d\r\n",modelYear);
    fprintf(cfile,"autoSync %d\r\n",(autoSync?1:0));
    fprintf(cfile,"kWperGid %4.3f\r\n",kWperGid);
    fprintf(cfile, "daysLog %d\r\n", daysLog);            
    fclose(cfile);
    
    // Make copy of CONFIG.TXT
    printMsg("Saving CONFIG.BAK.\n");
    cfile = fopen("/local/CONFIG.TXT", "r");
    sfr = f_open(&efile,"CONFIG.BAK",FA_WRITE|FA_CREATE_NEW);    
    if((cfile != NULL)&&(sfr == FR_OK)){
        printf("Copy config file to USB\n");
        while (!feof(cfile))
        {
            bytesRW=fread(buffer, 1, bufSize, cfile);
            sfr=f_write(&efile,&buffer,bytesRW,&bytesRW);
        }
        fflush(cfile);
    }
    fclose(cfile);
    f_close(&efile);

    // Make copy of ehist.cny
    printMsg("Saving ehist.bak.\n");
    cfile = fopen("/local/ehist.cny", "r");
    sfr = f_open(&efile,"ehist.bak",FA_WRITE|FA_CREATE_NEW);    
    if((cfile != NULL)&&(sfr == FR_OK)){
        printf("Copy ehist file to USB\n");
        while (!feof(cfile))
        {
            bytesRW=fread(buffer, 1, bufSize, cfile);
            sfr=f_write(&efile,&buffer,bytesRW,&bytesRW);
        }
        fflush(cfile);
    }
    fclose(cfile);
    f_close(&efile);
    wait(3);
}

void readConfig(){
    FILE *cfile;
    int ff,readHex,readBool;
    char sTemp[16];
    float readFloat;

    cfile = fopen("/local/config.txt", "r");
    if (cfile==NULL){ // if doesn't exist --> create
        printMsg("No config file found.\n"); // no config file
        printMsg("Calibrating touch screen.\n"); // calibrating
        //tt.setcal(5570, 34030, 80, 108, 33700, 5780, 82, 108, 32500);// bypass calibration using my values
        tt.calibrate();   // run touchscreen calibration routine
        // NOTE: calibrates screen 1 first, then screen 0.
        saveConfig();
    } else {
        ledHi = 0.8;
        ledLo = 0.3;
        pollInt = 60;
        scale12V = 16.2;
        kWperGid=0.080;
        skin = ttSkin;
        fscanf(cfile, "format %d\r\n", &ff );
        fscanf(cfile, "x0_off %d\r\n", &tt.x0_off );
        fscanf(cfile, "y0_off %d\r\n", &tt.y0_off );
        fscanf(cfile, "x0_pp %d\r\n", &tt.x0_pp );
        fscanf(cfile, "y0_pp %d\r\n", &tt.y0_pp );
        fscanf(cfile, "x1_off %d\r\n", &tt.x1_off );
        fscanf(cfile, "y1_off %d\r\n", &tt.y1_off );
        fscanf(cfile, "x1_pp %d\r\n", &tt.x1_pp );
        fscanf(cfile, "y1_pp %d\r\n", &tt.y1_pp );
        fscanf(cfile, "x_mid %d\r\n", &tt.x_mid );
        fscanf(cfile, "dMode0 %d\r\n", &dMode[0] );
        fscanf(cfile, "dMode1 %d\r\n", &dMode[1] );
        if(ff>1){
            fscanf(cfile, "ledHi %f\r\n", &ledHi );
            fscanf(cfile, "ledLo %f\r\n", &ledLo );
            fscanf(cfile, "pollInt %d\r\n", &pollInt );
            fscanf(cfile, "scale12V %f\r\n", &scale12V );
        }
        if(ff>2){
            fscanf(cfile, "skin %d\r\n", &skin );
            fscanf(cfile, "dtePeriod %d\r\n", &dtePeriod );
        }
        if(ff>3){
            fscanf(cfile, "DebugMode %d\r\n", &readBool );            
            debugMode = (bool)readBool;
        }
        if(ff>4) {
            fscanf(cfile, "metric %d\r\n", &readBool );            
            metric = (bool)readBool; // This will get re-assigned based on dash selection
            fscanf(cfile, "firmware %d\r\n", &fwCount );
        }
        if(ff>5){
            fscanf(cfile, "showHealth %d\r\n", &readBool );            
            showHealth = (bool)readBool;
        }
        if(ff>6){
            fscanf(cfile, "brakeMon %d\r\n", &readBool );
            brakeMon = (bool)(readBool&1);
            regenMon = (bool)(readBool&2);
            heaterMon = (bool)(readBool&4);
            if(ff>10){
                fscanf(cfile, "brkMonRate %f\r\n", &readFloat );
                brkMonRate = 94737 * readFloat;
                fscanf(cfile, "brkMonThr %f\r\n", &readFloat );
                brkMonThr = 1895 * readFloat;
            }else{
                fscanf(cfile, "brkMonRate %d\r\n", &brkMonRate );
                fscanf(cfile, "brkMonThr %d\r\n", &brkMonThr);
                brkMonRate = 378948;
                brkMonThr = 1895;
            }
        }
        if(ff>7){
            for(char i=0;i<8;i++){
                fscanf(cfile, "usrMsgId %s\r\n", &sTemp );
                sscanf(sTemp,"%x", &readHex);
                uMsgId[i]=readHex;
            }
        }
        if(ff>8){
            fscanf(cfile, "modelYear %d\r\n", &modelYear);            
            fscanf(cfile, "autoSync %d\r\n", &readBool);            
            autoSync = (bool)readBool;
        }
        if(ff>9){
            fscanf(cfile, "kWperGid %f\r\n", &kWperGid );
            }
        if(ff>11){
            fscanf(cfile, "daysLog %d\r\n", &daysLog );
            }
        fclose(cfile);
        if((ff>12)||(ff<1)||(ledHi<0.1)||(scale12V<10)||(tt.x_mid<16000)||(ledHi>1)||(ledLo>1)||(dMode[0]>maxScreens)||(dMode[1]>maxScreens)){ //Sanity check a few things
            //Something wrong. Load defaults
            printMsg("Invalid config file.  Loading defaults.\n");
            wait(3);
            ff=12;
            tt.x0_off=5732;
            tt.y0_off=34009;
            tt.x0_pp=77;
            tt.y0_pp=106;
            tt.x1_off=33955;
            tt.y1_off=6310;
            tt.x1_pp=80;
            tt.y1_pp=104;
            tt.x_mid=31986;
            dMode[0]=2;
            dMode[1]=4;
            ledHi=0.800;
            ledLo=0.300;
            pollInt=300;
            scale12V=16.20;
            skin=0;
            dtePeriod=14;
            debugMode=false;
            metric=false;
            fwCount=1;
            showHealth=true;
            brakeMon=true;
            regenMon=true;
            heaterMon=true;
            brkMonRate=378947; // 4Wh per chirp
            brkMonThr=1895; // 1Wh per second
            uMsgId[0]=0x5103;
            uMsgId[1]=0x50a3;
            uMsgId[2]=0x54a4;
            uMsgId[3]=0x54b4;
            uMsgId[4]=0x54c0;
            uMsgId[5]=0x55b4;
            uMsgId[6]=0x0000;
            uMsgId[7]=0x0000;
            modelYear=2011;
            autoSync=false;
            kWperGid=0.080;
            daysLog=999;
            }
        if(ff<12){//If not latest format, save as latest format
            saveConfig();
            printMsg("Config file format updated.\n"); // config format updates
        }
        printMsg("Config file loaded.\n"); // config file loaded
    }
}

void upDate(unsigned char field, bool upDownBar){
    struct tm t; // pointer to a static tm structure
    time_t seconds ;
    seconds = time(NULL);
    t = *localtime(&seconds) ;
    switch(field){
        case 0: // year
            if (upDownBar) {
                t.tm_year = t.tm_year+1;
            } else {
                t.tm_year = t.tm_year-1;
            }
            break;
        case 1: // month
            if (upDownBar) {
                t.tm_mon = (t.tm_mon<11)?t.tm_mon+1:0;
            } else {
                t.tm_mon = (t.tm_mon>0)?t.tm_mon-1:11;
            }
            break;
        case 2: // day
            if (upDownBar) {
                t.tm_mday = (t.tm_mday<31)?t.tm_mday+1:1;
            } else {
                t.tm_mday = (t.tm_mday>1)?t.tm_mday-1:31;
            }
            break;
        case 3: // hour
            if (upDownBar) {
                t.tm_hour = (t.tm_hour<23)?t.tm_hour+1:0;
            } else {
                t.tm_hour = (t.tm_hour>0)?t.tm_hour-1:23;
            }
            break;
        case 4: // minute
            if (upDownBar) {
                t.tm_min = (t.tm_min<59)?t.tm_min+1:0;
            } else {
                t.tm_min = (t.tm_min>0)?t.tm_min-1:59;
            }
            break;
        case 5: // second
            if (upDownBar) {
                t.tm_sec = (t.tm_sec<59)?t.tm_sec+1:0;
            } else {
                t.tm_sec = (t.tm_sec>0)?t.tm_sec-1:59;
            }
            break;
        default:
            break;
    }
    set_time(mktime(&t));
}

bool syncDateTime(){ // doesn't work on MY2013
    struct tm t; // pointer to a static tm structure
    time_t seconds ;
    CANMessage msg;
    static unsigned char lastHour, numMatched;
    seconds = time(NULL);
    t = *localtime(&seconds);
    if(modelYear<2013){ //MY2011,2012
        msg = lastMsg[indexLastMsg[0x5fa]];
        t.tm_mon = (msg.data[5]>>4)-1;
        t.tm_mday = msg.data[2]>>3;
        msg = lastMsg[indexLastMsg[0x5fb]];
        //t.tm_year = msg.data[1]; // Have not figured out where the year is
        msg = lastMsg[indexLastMsg[0x5fc]];
        t.tm_hour = msg.data[0]>>3;
        t.tm_min = (msg.data[1]<<4&0x30)+(msg.data[2]>>4);
        t.tm_sec = msg.data[1]>>2;
    }else{ // model year 2013 or higher
        msg = lastMsg[indexLastMsg[0x5f9]];
        t.tm_hour = msg.data[5]>>3;
        t.tm_min = msg.data[4];
        msg = lastMsg[indexLastMsg[0x509]];
        t.tm_sec = msg.data[2]>>2;
    }
    if(t.tm_hour==lastHour){ //filter
        numMatched++;
    }else{
        numMatched=0;
    }
    lastHour=t.tm_hour;
    if((numMatched>5)&&(t.tm_mon>=0)&&(t.tm_mon<12)&&(t.tm_mday>0)&&(t.tm_mday<32)&&(t.tm_hour>=0)&&(t.tm_hour<24)&&(t.tm_min>=0)&&(t.tm_min<60)&&(t.tm_sec>=0)&&(t.tm_sec<60)){ // sanity check result before using
        set_time(mktime(&t));
        numMatched=0;
        return(true);
    }else{
        return(false);
    }

}

void logPackVoltages() { // Turbo3 - routine to dump CP values to text file
    char sTemp[40];
    struct tm t; // pointer to a static tm structure
    short unsigned max, min, jv, i, bd;
    unsigned avg;
    unsigned short gids, SOC, packV_x2;
    unsigned long odo;
    signed short packA_x2;
    time_t seconds ;
    
    CANMessage msg;
    
    seconds = time(NULL); // Turbo3
    t = *localtime(&seconds) ; // Turbo3 
    
    msg = lastMsg[indexLastMsg[0x5bc]]; //Get gids
    gids = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x5c5]]; //Get odometer
    odo = (msg.data[1]<16)+(msg.data[2]<<8)+msg.data[3];
    msg = lastMsg[indexLastMsg[0x55b]]; //Get SOC
    SOC = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x1db]]; //Get pack volts
    packV_x2 = (msg.data[2]<<2)+(msg.data[3]>>6);
    packA_x2 = (msg.data[0]<<3)+(msg.data[1]>>5);
    if (packA_x2 & 0x400) packA_x2 |= 0xf800;
    
    max=0;
    min=9999;
    avg=0;
    for(i=0; i<96; i++) {
        bd=(battData[BatDataBaseG2*7+i*2+3]<<8)+battData[BatDataBaseG2*7+i*2+4];
        avg+=bd;
        if(bd>max) max=bd;
        if(bd<min) min=bd;
    }
    avg /= 96;
    if(min<3713) {
        jv=avg-(max-avg)*1.5;
    } else { // Only compute judgement value if min cellpair meets <= 3712mV requirement
        jv=0;
    }
    
    FIL bfile;
    FRESULT bfr;
    bfr = f_open(&bfile,"batvolt.txt",FA_WRITE|FA_OPEN_ALWAYS);
    if(bfr==FR_OK) {
        f_lseek(&bfile,0xffffffff); // go to end of file to append
        strftime(sTemp, 40, "%a %m/%d/%Y %X", &t);
        f_printf(&bfile,"%s,",sTemp);
        sprintf(sTemp,"%d,%d,%5.1f%%,%5.1f,%5.1f,%d,%d,%d,%d,%d",odo,gids,(float)SOC/10,(float)packV_x2/2,(float)packA_x2/2,max,min,avg,max-min,jv);
        f_printf(&bfile,"%s,",sTemp);           
        f_printf(&bfile,"%d,%d,%d,%d,",(battData[(BatDataBaseG4*7)+ 3]<<8)+battData[(BatDataBaseG4*7)+ 4],battData[(BatDataBaseG4*7)+ 5],(battData[(BatDataBaseG4*7)+ 6]<<8)+battData[(BatDataBaseG4*7)+ 7],battData[(BatDataBaseG4*7)+ 8]);
        f_printf(&bfile,"%d,%d,%d,%d", (battData[(BatDataBaseG4*7)+ 9]<<8)+battData[(BatDataBaseG4*7)+10],battData[(BatDataBaseG4*7)+11],(battData[(BatDataBaseG4*7)+12]<<8)+battData[(BatDataBaseG4*7)+13],battData[(BatDataBaseG4*7)+14]);
        for(i=0; i<96; i++) {
            bd=(battData[BatDataBaseG2*7+i*2+3]<<8)+battData[BatDataBaseG2*7+i*2+4];
            f_printf(&bfile,",%d",bd);
        }
        f_printf(&bfile,"\r\n");
        f_close(&bfile);
    }
    logCP=false;
    showCP=true;
}

void tripLog() { // Daily log
    char sTemp[40];
    unsigned char ambient;
    struct tm t; // pointer to a static tm structure
    short unsigned max, min, jv, i, bd;
    unsigned avg;
    unsigned short gids, SOC, SOH_x2, packV_x2;
    unsigned long odo;
    signed short packA_x2;
    time_t seconds ;
    
    CANMessage msg;
    
    seconds = time(NULL); // Turbo3
    t = *localtime(&seconds) ; // Turbo3 
    
    msg = lastMsg[indexLastMsg[0x54c]]; //Get ambient
    ambient = msg.data[6]-56;
    msg = lastMsg[indexLastMsg[0x5bc]]; //Get gids
    gids = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x5c5]]; //Get odometer
    odo = (msg.data[1]<16)+(msg.data[2]<<8)+msg.data[3];
    msg = lastMsg[indexLastMsg[0x55b]]; //Get SOC
    SOC = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x5b3]]; //Get SOH
    SOH_x2 = msg.data[1];
    msg = lastMsg[indexLastMsg[0x1db]]; //Get pack volts
    packV_x2 = (msg.data[2]<<2)+(msg.data[3]>>6);
    packA_x2 = (msg.data[0]<<3)+(msg.data[1]>>5);
    if (packA_x2 & 0x400) packA_x2 |= 0xf800;
    
    max=0;
    min=9999;
    avg=0;
    for(i=0; i<96; i++) {
        bd=(battData[BatDataBaseG2*7+i*2+3]<<8)+battData[BatDataBaseG2*7+i*2+4];
        avg+=bd;
        if(bd>max) max=bd;
        if(bd<min) min=bd;
    }
    avg /= 96;
    if(min<3713) {
        jv=avg-(max-avg)*1.5;
    } else { // Only compute judgement value if min cellpair meets <= 3712mV requirement
        jv=0;
    }
    
    FIL bfile;
    FRESULT bfr;
    bfr = f_open(&bfile,"triplog.txt",FA_WRITE|FA_OPEN_ALWAYS);
    if(bfr==FR_OK) {
        f_lseek(&bfile,0xffffffff); // go to end of file to append
        // timestamp, odometer, accV, gids, SOC, SOH, SOH2, Ah, Vbatt, Ibatt, Resr, maxCP, minCP, avgCP, maxCP-minCP, CVLI_jv, miles_trip, kWh_trip, CCkWh_trip, ambient, T1raw, T1, T2raw, T2, T3raw, T3, T4raw, T4, CP1, CP2, ... , CP96
        strftime(sTemp, 40, "%a %m/%d/%Y %X", &t);
        f_printf(&bfile,"%s,",sTemp);
        sprintf(sTemp,"%d,%3.1f,%d,%5.1f%%,%5.1f%%,%5.1f%%,%4.2f,%5.1f,%4.1f,%4.3f,%d,%d,%d,%d,%d,%4.1f,%4.2f,%4.2f",odo,accV,gids,(float)SOC/10, (float)SOH_x2/2, (float)SOH2_x100/100,(float)Ah_x10000/10000,(float)packV_x2/2,(float)packA_x2/2,Resr,max,min,avg,max-min,jv,miles_trip[0],kWh_trip[0],CCkWh_trip[0]);
        f_printf(&bfile,"%s,%d,",sTemp,ambient);           
        f_printf(&bfile,"%d,%d,%d,%d,",(battData[(BatDataBaseG4*7)+ 3]<<8)+battData[(BatDataBaseG4*7)+ 4],battData[(BatDataBaseG4*7)+ 5],(battData[(BatDataBaseG4*7)+ 6]<<8)+battData[(BatDataBaseG4*7)+ 7],battData[(BatDataBaseG4*7)+ 8]);
        f_printf(&bfile,"%d,%d,%d,%d", (battData[(BatDataBaseG4*7)+ 9]<<8)+battData[(BatDataBaseG4*7)+10],battData[(BatDataBaseG4*7)+11],(battData[(BatDataBaseG4*7)+12]<<8)+battData[(BatDataBaseG4*7)+13],battData[(BatDataBaseG4*7)+14]);
        for(i=0; i<96; i++) {
            bd=(battData[BatDataBaseG2*7+i*2+3]<<8)+battData[BatDataBaseG2*7+i*2+4];
            f_printf(&bfile,",%d",bd);
        }
        f_printf(&bfile,"\r\n");
        f_close(&bfile);
    }
}

//LM - updates firmware off a usb key, eliminating the need to plug
//the CANary into a computer for updates.
void updateFirmware()
{
    FIL efile; // external usb file
    FRESULT sfr; // external file access flags
    unsigned int bytesRW;
    char sTemp[40];
    const int bufSize = 2048;
    char buffer[bufSize];
    FILE *lfile;    

    tt.set_font((unsigned char*) Arial12x12);
    tt.background(Blue);
    tt.foreground(Yellow);
    tt.locate(0,10);
    tt.cls();

    sfr = f_open(&efile,"firmware.bin",FA_READ|FA_OPEN_EXISTING);    
    if(sfr != FR_OK)
    {        
        printf("Couldn't find firmware.bin\n");
        wait(3);
        lastDMode[whichTouched]=99;//force refresh
        return;
    }
    fwCount ++;
    printf("Saving config.\n");
    saveConfig();
    //delete all bin files in /local
    DIR *dir;
    struct dirent *ent;
    printf("Starting update.\n");
    printf("Deleting old firmware files.\n");
    if ((dir = opendir ("/local/")) != NULL) {
      // print all the files and directories within directory
      while ((ent = readdir (dir)) != NULL) {
            //printf("FILE: %s\n",ent->d_name);
            char dest[4] = "";
            strncat(dest, &ent->d_name[strlen(ent->d_name)-3],3);            
            dest[0] = tolower(dest[0]);
            dest[1] = tolower(dest[1]);
            dest[2] = tolower(dest[2]);                        
            if(strcmp(dest,"bin")==0)
            {                            
                sprintf(sTemp,"/local/%s",ent->d_name);
                int result = remove(sTemp);       
                printf("deleted: %s\n",ent->d_name);
            }
      }
      closedir (dir);
    } else {
      //could not open directory
        printf("Couldn't open folder.\n");
        wait(3);
        return;
    }        
    printf("Copying new firmware.\n");
    //Copy the new firmware from usb->local
    //The newest bin file is the one that is used by the mbed  
    sprintf(sTemp,"/local/fw%d.bin",fwCount);
    printf("Writing %s.\n",sTemp);
    //wait(2);
    lfile = fopen(sTemp, "wb");
    if(lfile == NULL)
    {
        printf("Couldn't open destination.\n");
        wait(3);
        return;
    }

    while (!f_eof(&efile))
    {
        sfr=f_read(&efile,&buffer,bufSize,&bytesRW);
        fwrite(buffer, 1, bytesRW, lfile);
    }

    fflush(lfile);
    fclose(lfile);
    f_close(&efile);
    printf("Successful.\n\n");
    printf("Rebooting in 5 seconds.\n");
    wait(5);
    //Now run new firmware
    mbed_reset();
}

void updateConfig()
{
    FIL efile; // external usb file
    FRESULT sfr; // external file access flags
    unsigned int bytesRW;
    const int bufSize = 2048;
    char buffer[bufSize];
    FILE *lfile;    

    tt.set_font((unsigned char*) Arial12x12);
    tt.background(Blue);
    tt.foreground(Yellow);
    tt.locate(0,10);
    tt.cls();
    
    printMsg("Copy config file from USB\n");
    // Check for config file on USB drive
    sfr = f_open(&efile,"CONFIG.TXT",FA_READ|FA_OPEN_EXISTING);    
    if(sfr == FR_OK){        
        printf("Copy config file from USB\n");
        lfile = fopen("/local/CONFIG.TXT", "w");
        if(lfile != NULL) {
            while (!f_eof(&efile)){
                sfr=f_read(&efile,&buffer,bufSize,&bytesRW);
                fwrite(buffer, 1, bytesRW, lfile);
            }
            fflush(lfile);
            fclose(lfile);
        }
        f_close(&efile);
        int fwc_tmp = fwCount;
        readConfig();
        fwCount = fwc_tmp; // Do no overwrite fwcount when loading new config
    }

    // Check for history file on USB drive
    printMsg("Copy ehist file from USB\n");
    sfr = f_open(&efile,"ehist.cny",FA_READ|FA_OPEN_EXISTING);    
    if(sfr == FR_OK){        
        printf("Copy ehist file from USB\n");
        lfile = fopen("/local/ehist.cny", "w");
        if(lfile != NULL) {
            while (!f_eof(&efile)){
                sfr=f_read(&efile,&buffer,bufSize,&bytesRW);
                fwrite(buffer, 1, bytesRW, lfile);
            }
            fflush(lfile);
            fclose(lfile);
        }
        f_close(&efile);
    }
    printf("Successful.\n\n");
    wait(5);
}

bool detectUSB(void){
    FIL tfile; // external usb file
    bool usbEn = (f_open(&tfile,"usb.det",FA_WRITE|FA_OPEN_ALWAYS)==FR_OK);
    if(usbEn){
        f_close(&tfile);
        f_unlink("usb.det");
    }
    return(usbEn);
}

void spkrOff(void){
    if(bCount<2){
        spkr.period(1.0/bFreq[bCount]);
        beepOff.attach(&spkrOff, bTime[bCount++]);   
    }else{
        spkr=0;
        dled.period(.001);
    }
}

void beep(float freq, float time){
    if (enableSound) {
        spkr.period(1.0/freq);
        spkr=0.5;
        if(!headlights){ //restore LCD pwm output (Beep pwm interferes with display pwm)
                dled = ledHi;
            } else {
                dled = ledLo;
            }
        beepOff.attach(&spkrOff, time);
    }
}

void beep3(float freq1, float time1, float freq2, float time2, float freq3, float time3){
    bFreq[0]=freq2;
    bTime[0]=time2;
    bFreq[1]=freq3;
    bTime[1]=time3;
    bCount=0;
    beep(freq1, time1);
}

void chirp(void){
    static unsigned short counter=0;
    
    if(chirpInt>0){
        if(++counter>chirpInt){
            beep(1600,0.015);
            counter=0;
        }
    }else{
        counter=0;
    }
}

//Sample CONFIG.TXT
/*
format 12
x0_off 5732
y0_off 34009
x0_pp 77
y0_pp 106
x1_off 33955
y1_off 6310
x1_pp 80
y1_pp 104
x_mid 31986
dMode0 4
dMode1 2
ledHi 0.800
ledLo 0.300
pollInt 300
scale12V 16.20
skin 0
dtePeriod 14
DebugMode 0
metric 0
firmware 1
showHealth 1
brakeMon 1
brkMonRate 4.0
brkMonThr 1.0
usrMsgId 5103
usrMsgId 50a3
usrMsgId 54a4
usrMsgId 54b4
usrMsgId 54c0
usrMsgId 55b4
usrMsgId 0000
usrMsgId 0000
modelYear 2011
autoSync 1
kWperGid 0.075
daysLog 999
*/