mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
Revision 8:69ce7aaad4c4, committed 2015-10-26
- Comitter:
- mbed_official
- Date:
- Mon Oct 26 09:00:10 2015 +0000
- Parent:
- 7:cf567a118ec7
- Child:
- 9:673ec039aeb3
- Commit message:
- Synchronized with git revision 22ef4124357e8536842581c7afd8e0c2c7858d6f
Full URL: https://github.com/mbedmicro/mbed/commit/22ef4124357e8536842581c7afd8e0c2c7858d6f/
STM32xx -Fix analog_out issue with 12 to 16bits conversion
Changed in this revision
--- a/targets/cmsis/TARGET_Freescale/TARGET_K22F/cmsis_nvic.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/cmsis/TARGET_Freescale/TARGET_K22F/cmsis_nvic.c Mon Oct 26 09:00:10 2015 +0000
@@ -31,14 +31,13 @@
#include "cmsis_nvic.h"
#define NVIC_RAM_VECTOR_ADDRESS (0x1FFF0000) // Vectors positioned at start of RAM
-#define NVIC_FLASH_VECTOR_ADDRESS (0x0) // Initial vector position in flash
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
uint32_t *vectors = (uint32_t*)SCB->VTOR;
uint32_t i;
// Copy and switch to dynamic vectors if the first time called
- if (SCB->VTOR == NVIC_FLASH_VECTOR_ADDRESS) {
+ if (SCB->VTOR < NVIC_RAM_VECTOR_ADDRESS) {
uint32_t *old_vectors = vectors;
vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
for (i=0; i<NVIC_NUM_VECTORS; i++) {
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Freescale/TARGET_K20XX/TARGET_K20D50M/us_ticker.c Mon Oct 26 09:00:10 2015 +0000
@@ -0,0 +1,161 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2006-2015 ARM Limited
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <stddef.h>
+#include "us_ticker_api.h"
+#include "PeripheralNames.h"
+#include "clk_freqs.h"
+
+#define PIT_TIMER PIT->CHANNEL[0]
+#define PIT_TIMER_IRQ PIT0_IRQn
+#define PIT_TICKER PIT->CHANNEL[1]
+#define PIT_TICKER_IRQ PIT1_IRQn
+
+static void timer_init(void);
+static void ticker_init(void);
+
+
+static int us_ticker_inited = 0;
+static uint32_t clk_mhz;
+
+void us_ticker_init(void) {
+ if (us_ticker_inited)
+ return;
+ us_ticker_inited = 1;
+
+ SIM->SCGC6 |= SIM_SCGC6_PIT_MASK; // Clock PIT
+ PIT->MCR = 0; // Enable PIT
+
+ clk_mhz = bus_frequency() / 1000000;
+
+ timer_init();
+ ticker_init();
+}
+
+/******************************************************************************
+ * Timer for us timing.
+ *
+ * The K20D5M does not have a prescaler on its PIT timer nor the option
+ * to chain timers, which is why a software timer is required to get 32-bit
+ * word length.
+ ******************************************************************************/
+static volatile uint32_t msb_counter = 0;
+static uint32_t timer_ldval = 0;
+
+static void timer_isr(void) {
+ if (PIT_TIMER.TFLG == 1) {
+ msb_counter++;
+ PIT_TIMER.TFLG = 1;
+ }
+}
+
+static void timer_init(void) {
+ //CLZ counts the leading zeros, returning number of bits not used by clk_mhz
+ timer_ldval = clk_mhz << __CLZ(clk_mhz);
+
+ PIT_TIMER.LDVAL = timer_ldval; // 1us
+ PIT_TIMER.TCTRL |= PIT_TCTRL_TIE_MASK;
+ PIT_TIMER.TCTRL |= PIT_TCTRL_TEN_MASK; // Start timer 0
+
+ NVIC_SetVector(PIT_TIMER_IRQ, (uint32_t)timer_isr);
+ NVIC_EnableIRQ(PIT_TIMER_IRQ);
+}
+
+uint32_t us_ticker_read() {
+ if (!us_ticker_inited)
+ us_ticker_init();
+
+ uint32_t retval;
+ __disable_irq();
+ retval = (timer_ldval - PIT_TIMER.CVAL) / clk_mhz; //Hardware bits
+ retval |= msb_counter << __CLZ(clk_mhz); //Software bits
+
+ if (PIT_TIMER.TFLG == 1) { //If overflow bit is set, force it to be handled
+ timer_isr(); //Handle IRQ, read again to make sure software/hardware bits are synced
+ NVIC_ClearPendingIRQ(PIT_TIMER_IRQ);
+ return us_ticker_read();
+ }
+
+ __enable_irq();
+ return retval;
+}
+
+/******************************************************************************
+ * Timer Event
+ *
+ * It schedules interrupts at given (32bit)us interval of time.
+ * It is implemented using PIT channel 1, since no prescaler is available,
+ * some bits are implemented in software.
+ ******************************************************************************/
+static void ticker_isr(void);
+
+static void ticker_init(void) {
+ /* Set interrupt handler */
+ NVIC_SetVector(PIT_TICKER_IRQ, (uint32_t)ticker_isr);
+ NVIC_EnableIRQ(PIT_TICKER_IRQ);
+}
+
+void us_ticker_disable_interrupt(void) {
+ PIT_TICKER.TCTRL &= ~PIT_TCTRL_TIE_MASK;
+}
+
+void us_ticker_clear_interrupt(void) {
+ // we already clear interrupt in lptmr_isr
+}
+
+static uint32_t us_ticker_int_counter = 0;
+
+inline static void ticker_set(uint32_t count) {
+ PIT_TICKER.TCTRL = 0;
+ PIT_TICKER.LDVAL = count;
+ PIT_TICKER.TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK;
+}
+
+static void ticker_isr(void) {
+ // Clear IRQ flag
+ PIT_TICKER.TFLG = 1;
+
+ if (us_ticker_int_counter > 0) {
+ ticker_set(0xFFFFFFFF);
+ us_ticker_int_counter--;
+ } else {
+ // This function is going to disable the interrupts if there are
+ // no other events in the queue
+ us_ticker_irq_handler();
+ }
+}
+
+void us_ticker_set_interrupt(timestamp_t timestamp) {
+ int delta = (int)((uint32_t)timestamp - us_ticker_read());
+ if (delta <= 0) {
+ // This event was in the past:
+ us_ticker_irq_handler();
+ return;
+ }
+
+ //Calculate how much falls outside the 32-bit after multiplying with clk_mhz
+ //We shift twice 16-bit to keep everything within the 32-bit variable
+ us_ticker_int_counter = (uint32_t)(delta >> 16);
+ us_ticker_int_counter *= clk_mhz;
+ us_ticker_int_counter >>= 16;
+
+ uint32_t us_ticker_int_remainder = (uint32_t)delta * clk_mhz;
+ if (us_ticker_int_remainder == 0) {
+ ticker_set(0xFFFFFFFF);
+ us_ticker_int_counter--;
+ } else {
+ ticker_set(us_ticker_int_remainder);
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Freescale/TARGET_K20XX/TARGET_TEENSY3_1/us_ticker.c Mon Oct 26 09:00:10 2015 +0000
@@ -0,0 +1,84 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2006-2015 ARM Limited
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <stddef.h>
+#include "us_ticker_api.h"
+#include "PeripheralNames.h"
+#include "clk_freqs.h"
+
+static int us_ticker_inited = 0;
+
+void us_ticker_init(void) {
+ if (us_ticker_inited)
+ return;
+ us_ticker_inited = 1;
+
+ SIM->SCGC6 |= SIM_SCGC6_PIT_MASK; // Clock PIT
+ PIT->MCR = 0; // Enable PIT
+
+ //Timer on PIT0+1, ticker on PIT 2+3
+ //Init timer
+ PIT->CHANNEL[1].LDVAL = 0xFFFFFFFF;
+ PIT->CHANNEL[1].TCTRL = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK; // Start timer 1, chained to timer 0
+
+ // Use channel 0 as a prescaler for channel 1
+ uint32_t ldval = (bus_frequency() + 500000) / 1000000 - 1;
+ PIT->CHANNEL[0].LDVAL = ldval;
+ PIT->CHANNEL[0].TCTRL = PIT_TCTRL_TEN_MASK; // Start timer
+
+ //Init ticker
+ PIT->CHANNEL[2].LDVAL = ldval;
+ PIT->CHANNEL[2].TCTRL = PIT_TCTRL_TEN_MASK; // Start timer 2 as prescaler
+
+ NVIC_SetVector(PIT3_IRQn, (uint32_t)us_ticker_irq_handler);
+ NVIC_EnableIRQ(PIT3_IRQn);
+}
+
+/******************************************************************************
+ * Timer for us timing.
+ ******************************************************************************/
+
+uint32_t us_ticker_read() {
+ if (!us_ticker_inited)
+ us_ticker_init();
+
+ return ~(PIT->CHANNEL[1].CVAL);
+}
+
+/******************************************************************************
+ * Ticker Event
+ ******************************************************************************/
+
+void us_ticker_disable_interrupt(void) {
+ PIT->CHANNEL[3].TCTRL &= ~PIT_TCTRL_TIE_MASK;
+}
+
+void us_ticker_clear_interrupt(void) {
+ PIT->CHANNEL[3].TFLG = 1;
+}
+
+void us_ticker_set_interrupt(timestamp_t timestamp) {
+ int delta = (int)((uint32_t)timestamp - us_ticker_read());
+ if (delta <= 0) {
+ // This event was in the past:
+ us_ticker_irq_handler();
+ return;
+ }
+
+ PIT->CHANNEL[3].TCTRL = 0;
+ PIT->CHANNEL[3].LDVAL = delta;
+ PIT->CHANNEL[3].TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK | PIT_TCTRL_CHN_MASK;
+
+}
--- a/targets/hal/TARGET_Freescale/TARGET_K20XX/us_ticker.c Fri Oct 16 07:45:35 2015 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,159 +0,0 @@
-/* mbed Microcontroller Library
- * Copyright (c) 2006-2015 ARM Limited
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include <stddef.h>
-#include "us_ticker_api.h"
-#include "PeripheralNames.h"
-#include "clk_freqs.h"
-
-#define PIT_TIMER PIT->CHANNEL[0]
-#define PIT_TIMER_IRQ PIT0_IRQn
-#define PIT_TICKER PIT->CHANNEL[1]
-#define PIT_TICKER_IRQ PIT1_IRQn
-
-static void timer_init(void);
-static void ticker_init(void);
-
-
-static int us_ticker_inited = 0;
-static uint32_t clk_mhz;
-
-void us_ticker_init(void) {
- if (us_ticker_inited)
- return;
- us_ticker_inited = 1;
-
- SIM->SCGC6 |= SIM_SCGC6_PIT_MASK; // Clock PIT
- PIT->MCR = 0; // Enable PIT
-
- clk_mhz = bus_frequency() / 1000000;
-
- timer_init();
- ticker_init();
-}
-
-/******************************************************************************
- * Timer for us timing.
- *
- * The K20D5M does not have a prescaler on its PIT timer nor the option
- * to chain timers, which is why a software timer is required to get 32-bit
- * word length.
- ******************************************************************************/
-static volatile uint32_t msb_counter = 0;
-static uint32_t timer_ldval = 0;
-
-static void timer_isr(void) {
- msb_counter++;
- PIT_TIMER.TFLG = 1;
-}
-
-static void timer_init(void) {
- //CLZ counts the leading zeros, returning number of bits not used by clk_mhz
- timer_ldval = clk_mhz << __CLZ(clk_mhz);
-
- PIT_TIMER.LDVAL = timer_ldval; // 1us
- PIT_TIMER.TCTRL |= PIT_TCTRL_TIE_MASK;
- PIT_TIMER.TCTRL |= PIT_TCTRL_TEN_MASK; // Start timer 0
-
- NVIC_SetVector(PIT_TIMER_IRQ, (uint32_t)timer_isr);
- NVIC_EnableIRQ(PIT_TIMER_IRQ);
-}
-
-uint32_t us_ticker_read() {
- if (!us_ticker_inited)
- us_ticker_init();
-
- uint32_t retval;
- __disable_irq();
- retval = (timer_ldval - PIT_TIMER.CVAL) / clk_mhz; //Hardware bits
- retval |= msb_counter << __CLZ(clk_mhz); //Software bits
-
- if (PIT_TIMER.TFLG == 1) { //If overflow bit is set, force it to be handled
- timer_isr(); //Handle IRQ, read again to make sure software/hardware bits are synced
- NVIC_ClearPendingIRQ(PIT_TIMER_IRQ);
- return us_ticker_read();
- }
-
- __enable_irq();
- return retval;
-}
-
-/******************************************************************************
- * Timer Event
- *
- * It schedules interrupts at given (32bit)us interval of time.
- * It is implemented using PIT channel 1, since no prescaler is available,
- * some bits are implemented in software.
- ******************************************************************************/
-static void ticker_isr(void);
-
-static void ticker_init(void) {
- /* Set interrupt handler */
- NVIC_SetVector(PIT_TICKER_IRQ, (uint32_t)ticker_isr);
- NVIC_EnableIRQ(PIT_TICKER_IRQ);
-}
-
-void us_ticker_disable_interrupt(void) {
- PIT_TICKER.TCTRL &= ~PIT_TCTRL_TIE_MASK;
-}
-
-void us_ticker_clear_interrupt(void) {
- // we already clear interrupt in lptmr_isr
-}
-
-static uint32_t us_ticker_int_counter = 0;
-
-inline static void ticker_set(uint32_t count) {
- PIT_TICKER.TCTRL = 0;
- PIT_TICKER.LDVAL = count;
- PIT_TICKER.TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK;
-}
-
-static void ticker_isr(void) {
- // Clear IRQ flag
- PIT_TICKER.TFLG = 1;
-
- if (us_ticker_int_counter > 0) {
- ticker_set(0xFFFFFFFF);
- us_ticker_int_counter--;
- } else {
- // This function is going to disable the interrupts if there are
- // no other events in the queue
- us_ticker_irq_handler();
- }
-}
-
-void us_ticker_set_interrupt(timestamp_t timestamp) {
- int delta = (int)((uint32_t)timestamp - us_ticker_read());
- if (delta <= 0) {
- // This event was in the past:
- us_ticker_irq_handler();
- return;
- }
-
- //Calculate how much falls outside the 32-bit after multiplying with clk_mhz
- //We shift twice 16-bit to keep everything within the 32-bit variable
- us_ticker_int_counter = (uint32_t)(delta >> 16);
- us_ticker_int_counter *= clk_mhz;
- us_ticker_int_counter >>= 16;
-
- uint32_t us_ticker_int_remainder = (uint32_t)delta * clk_mhz;
- if (us_ticker_int_remainder == 0) {
- ticker_set(0xFFFFFFFF);
- us_ticker_int_counter--;
- } else {
- ticker_set(us_ticker_int_remainder);
- }
-}
--- a/targets/hal/TARGET_STM/TARGET_STM32F0/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32F0/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -36,6 +36,7 @@
#include "PeripheralPins.h"
#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
static DAC_HandleTypeDef DacHandle;
@@ -80,12 +81,12 @@
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
-static inline void dac_write(dac_t *obj, uint16_t value) {
+static inline void dac_write(dac_t *obj, int value) {
if (obj->pin == PA_4) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_1);
- } else { // PA_5
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ } else if (obj->pin == PA_5) {
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_2);
}
}
@@ -93,36 +94,34 @@
static inline int dac_read(dac_t *obj) {
if (obj->pin == PA_4) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
- } else { // PA_5
+ } else if (obj->pin == PA_5) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_2);
}
+ return 0; /* Just silented warning */
}
void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)DAC_RANGE));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
void analogout_write_u16(dac_t *obj, uint16_t value) {
- if (value > (uint16_t)DAC_RANGE) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
- } else {
- dac_write(obj, value);
- }
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)((float)value * (1.0f / (float)DAC_RANGE));
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
uint16_t analogout_read_u16(dac_t *obj) {
- return (uint16_t)dac_read(obj);
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32F3/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32F3/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -36,6 +36,7 @@
#include "PeripheralPins.h"
#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
static DAC_HandleTypeDef DacHandle;
@@ -43,8 +44,7 @@
static int pa4_used = 0;
static int pa5_used = 0;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
DAC_ChannelConfTypeDef sConfig;
// Get the peripheral name from the pin and assign it to the object
@@ -97,8 +97,7 @@
analogout_write_u16(obj, 0);
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
// Reset DAC and disable clock
if (obj->pin == PA_4) pa4_used = 0;
if (obj->pin == PA_5) pa5_used = 0;
@@ -121,22 +120,20 @@
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
if (obj->channel == 1) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_1);
}
#if defined(DAC_CHANNEL_2)
if (obj->channel == 2) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_2);
}
#endif
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->channel == 1) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
}
@@ -148,35 +145,28 @@
return 0;
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)DAC_RANGE));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)DAC_RANGE) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
- } else {
- dac_write(obj, value);
- }
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)((float)value * (1.0f / (float)DAC_RANGE));
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32F4/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32F4/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -35,13 +35,13 @@
#include "stm32f4xx_hal.h"
#include "PeripheralPins.h"
-#define RANGE_12BIT (0xFFF)
+#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
DAC_HandleTypeDef DacHandle;
static DAC_ChannelConfTypeDef sConfig;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
uint32_t channel ;
HAL_StatusTypeDef status;
@@ -94,18 +94,16 @@
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
HAL_StatusTypeDef status = HAL_ERROR;
if (obj->channel == 1) {
- status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
} else if (obj->channel == 2) {
- status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
}
if ( status != HAL_OK ) {
@@ -113,46 +111,37 @@
}
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->channel == 1) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
} else if (obj->channel == 2) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_2);
}
- return 0; /* Just silented warning */
+ return 0; /* Just silented warning */
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)RANGE_12BIT); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)RANGE_12BIT));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)RANGE_12BIT) {
- value = (uint16_t)RANGE_12BIT; // Max value
- }
-
- dac_write(obj, value);
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
-
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)value * (1.0f / (float)RANGE_12BIT);
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32F7/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32F7/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -35,13 +35,13 @@
#include "stm32f7xx_hal.h"
#include "PeripheralPins.h"
-#define RANGE_12BIT (0xFFF)
+#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
DAC_HandleTypeDef DacHandle;
static DAC_ChannelConfTypeDef sConfig;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
uint32_t channel ;
HAL_StatusTypeDef status;
@@ -94,18 +94,16 @@
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
HAL_StatusTypeDef status = HAL_ERROR;
if (obj->channel == 1) {
- status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
} else if (obj->channel == 2) {
- status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ status = HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
}
if (status != HAL_OK) {
@@ -113,8 +111,7 @@
}
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->channel == 1) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
} else if (obj->channel == 2) {
@@ -123,36 +120,28 @@
return 0; /* Just silented warning */
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)RANGE_12BIT); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)RANGE_12BIT));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)RANGE_12BIT) {
- value = (uint16_t)RANGE_12BIT; // Max value
- }
-
- dac_write(obj, value);
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
-
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)value * (1.0f / (float)RANGE_12BIT);
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32L0/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32L0/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -36,6 +36,7 @@
#include "PeripheralPins.h"
#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
static DAC_HandleTypeDef DacHandle;
@@ -43,8 +44,7 @@
static int channel1_used = 0;
static int channel2_used = 0;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
DAC_ChannelConfTypeDef sConfig;
// Get the peripheral name from the pin and assign it to the object
@@ -91,8 +91,7 @@
analogout_write_u16(obj, 0);
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
// Reset DAC and disable clock
if (obj->channel == 1) channel1_used = 0;
if (obj->channel == 2) channel2_used = 0;
@@ -107,22 +106,20 @@
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
if (obj->channel == 1) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_1);
}
#if defined(DAC_CHANNEL_2)
if (obj->channel == 2) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_2);
}
#endif
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->channel == 1) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
}
@@ -134,35 +131,28 @@
return 0;
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)DAC_RANGE));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)DAC_RANGE) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
- } else {
- dac_write(obj, value);
- }
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)((float)value * (1.0f / (float)DAC_RANGE));
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32L1/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32L1/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -36,6 +36,7 @@
#include "PeripheralPins.h"
#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
static DAC_HandleTypeDef DacHandle;
@@ -43,8 +44,7 @@
static int pa4_used = 0;
static int pa5_used = 0;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
DAC_ChannelConfTypeDef sConfig;
DacHandle.Instance = DAC;
@@ -77,8 +77,7 @@
analogout_write_u16(obj, 0);
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
// Reset DAC and disable clock
if (obj->pin == PA_4) pa4_used = 0;
if (obj->pin == PA_5) pa5_used = 0;
@@ -92,19 +91,17 @@
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
if (obj->pin == PA_4) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_1);
} else { // PA_5
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_2);
}
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->pin == PA_4) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
} else { // PA_5
@@ -112,35 +109,28 @@
}
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)DAC_RANGE));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)DAC_RANGE) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
- } else {
- dac_write(obj, value);
- }
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)((float)value * (1.0f / (float)DAC_RANGE));
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
--- a/targets/hal/TARGET_STM/TARGET_STM32L4/analogout_api.c Fri Oct 16 07:45:35 2015 +0100
+++ b/targets/hal/TARGET_STM/TARGET_STM32L4/analogout_api.c Mon Oct 26 09:00:10 2015 +0000
@@ -36,6 +36,7 @@
#include "PeripheralPins.h"
#define DAC_RANGE (0xFFF) // 12 bits
+#define DAC_NB_BITS (12)
static DAC_HandleTypeDef DacHandle;
@@ -43,8 +44,7 @@
static int channel1_used = 0;
static int channel2_used = 0;
-void analogout_init(dac_t *obj, PinName pin)
-{
+void analogout_init(dac_t *obj, PinName pin) {
DAC_ChannelConfTypeDef sConfig = {0};
// Get the peripheral name from the pin and assign it to the object
@@ -94,8 +94,7 @@
analogout_write_u16(obj, 0);
}
-void analogout_free(dac_t *obj)
-{
+void analogout_free(dac_t *obj) {
// Reset DAC and disable clock
if (obj->channel == 1) channel1_used = 0;
if (obj->channel == 2) channel2_used = 0;
@@ -110,20 +109,18 @@
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
-static inline void dac_write(dac_t *obj, uint16_t value)
-{
+static inline void dac_write(dac_t *obj, int value) {
if (obj->channel == 1) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_1);
}
if (obj->channel == 2) {
- HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value);
+ HAL_DAC_SetValue(&DacHandle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, (value & DAC_RANGE));
HAL_DAC_Start(&DacHandle, DAC_CHANNEL_2);
}
}
-static inline int dac_read(dac_t *obj)
-{
+static inline int dac_read(dac_t *obj) {
if (obj->channel == 1) {
return (int)HAL_DAC_GetValue(&DacHandle, DAC_CHANNEL_1);
}
@@ -133,35 +130,28 @@
return 0;
}
-void analogout_write(dac_t *obj, float value)
-{
+void analogout_write(dac_t *obj, float value) {
if (value < 0.0f) {
dac_write(obj, 0); // Min value
} else if (value > 1.0f) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
+ dac_write(obj, (int)DAC_RANGE); // Max value
} else {
- dac_write(obj, (uint16_t)(value * (float)DAC_RANGE));
+ dac_write(obj, (int)(value * (float)DAC_RANGE));
}
}
-void analogout_write_u16(dac_t *obj, uint16_t value)
-{
- if (value > (uint16_t)DAC_RANGE) {
- dac_write(obj, (uint16_t)DAC_RANGE); // Max value
- } else {
- dac_write(obj, value);
- }
+void analogout_write_u16(dac_t *obj, uint16_t value) {
+ dac_write(obj, value >> (16 - DAC_NB_BITS));
}
-float analogout_read(dac_t *obj)
-{
+float analogout_read(dac_t *obj) {
uint32_t value = dac_read(obj);
- return (float)((float)value * (1.0f / (float)DAC_RANGE));
+ return (float)value * (1.0f / (float)DAC_RANGE);
}
-uint16_t analogout_read_u16(dac_t *obj)
-{
- return (uint16_t)dac_read(obj);
+uint16_t analogout_read_u16(dac_t *obj) {
+ uint32_t value = dac_read(obj);
+ return (value << 4) | ((value >> 8) & 0x000F); // Conversion from 12 to 16 bits
}
#endif // DEVICE_ANALOGOUT
