123
Dependencies: mbed HTS221 LPS25HB
readme.md
- Committer:
- Simon_mbed
- Date:
- 2020-04-06
- Revision:
- 0:2365a00ff7b6
File content as of revision 0:2365a00ff7b6:
#include "mbed.h"
#include "HTS221_driver.h"
/*------------------------------------------------------------------------------
Before to use this example, ensure that you an hyperterminal installed on your
computer. More info here: https://developer.mbed.org/handbook/Terminals
The default serial comm port uses the SERIAL_TX and SERIAL_RX pins (see their
definition in the PinNames.h file).
The default serial configuration in this case is 9600 bauds, 8-bit data, no parity
If you want to change the baudrate for example, you have to redeclare the
serial object in your code:
Serial pc(SERIAL_TX, SERIAL_RX);
Then, you can modify the baudrate and print like this:
pc.baud(115200);
pc.printf("Hello World !\n");
------------------------------------------------------------------------------*/
//https://www.cnblogs.com/zlbg/p/4216251.html
DigitalOut myled(LED1);
DigitalOut led(LED1);
I2C i2c(I2C_SDA, I2C_SCL);
HTS221Sensor hts221;
char data_write[2];
char data_read[4];
float t0, t1, h0, h1;
int t0out, t1out, h0out, h1out;
int16_t outHumi = 0;
int16_t outTemp = 0;
float valueHumi = 0;
float valueTemp = 0;
float mapFloat(int x, int in_min, int in_max, float out_min, float out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void read_calidata0()
{
//Read Cali Data
//read out t0degCx8, t1degCx8
data_write[0] = HTS221_T0_DEGC_X8;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 4, 0);
int t0degCx8 = ((data_read[3] & 0b00000011) << 8) | data_read[0];
int t1degCx8 = ((data_read[3] & 0b00001100) << 6) | data_read[1];
t0 = t0degCx8/8.0;
t1 = t1degCx8/8.0;
//read out t0out, t1out
data_write[0] = HTS221_T0_OUT_L |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 4, 0);
t0out = (data_read[1] << 8) | data_read[0];
t1out = (data_read[3] << 8) | data_read[2];
//read out h0RHx2, h1RHx2
data_write[0] = HTS221_H0_RH_X2 |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 2, 0);
unsigned char h0RHx2 = data_read[0];
unsigned char h1RHx2 = data_read[1];
h0 = h0RHx2/2.0;
h1 = h1RHx2/2.0;
//read out h0t0Out
data_write[0] = HTS221_H0_T0_OUT_L |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 2, 0);
h0out = (data_read[1] << 8) | data_read[0];
//read out h1t0Out
data_write[0] = HTS221_H1_T0_OUT_L |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 2, 0);
h1out = (data_read[1] << 8) | data_read[0];
//print the calibration coefficients
printf("Calibration coefficients: \r\n");
printf("t0 =%f `C t0out = %d \r\n",t0,t0out);
printf("t1 =%f `C t1out = %d \r\n",t1,t1out);
printf("h0 =%f RH h0out = %d \r\n",h0,h0out);
printf("h1 =%f RH h1out = %d \r\n",h1,h1out);
printf("------------------------\r\n");
}
HTS221_Error_et HTS221_Get_Temperature1(int16_t *value)
{
int16_t T0_out,T1_out,T_out,T0_degC_x8_u16,T1_degC_x8_u16;
int16_t T0_degC, T1_degC;
uint8_t buffer[4], tmp;
uint32_t tmp32;
/*1. Read from 0x32 & 0x33 registers the value of coefficients T0_d egC_x8 and T1_de gC_x8*/
data_write[0] = HTS221_T0_DEGC_X8;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,(char*)buffer, 2, 0);
/*2. Read from 0x35 register the value of the MSB bits of T1_deg C and T0_deg C */
data_write[0] = HTS221_T0_T1_DEGC_H2;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,(char*)&tmp, 1, 0);
/*Calculate the T0_deg C and T1_deg C values*/
T0_degC_x8_u16 = (((uint16_t)(tmp & 0x03)) << 8) | ((uint16_t)buffer[0]);
T1_degC_x8_u16 = (((uint16_t)(tmp & 0x0C)) << 6) | ((uint16_t)buffer[1]);
T0_degC = T0_degC_x8_u16>>3;
T1_degC = T1_degC_x8_u16>>3;
/*3. Read from 0x3C & 0x3D registers the value of T0_OUT*/
/*4. Read from 0x3E & 0x3F registers the value of T1_OUT*/
data_write[0] = HTS221_T0_OUT_L |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,(char*)buffer, 4, 0);
T0_out = (((uint16_t)buffer[1])<<8) | (uint16_t)buffer[0];
T1_out = (((uint16_t)buffer[3])<<8) | (uint16_t)buffer[2];
/* 5.Read from 0x2A & 0x2B registers the value T_OUT (ADC _OUT).*/
data_write[0] = HTS221_TEMP_OUT_L_REG;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,(char*)buffer, 2, 0);
T_out = (((uint16_t)buffer[1])<<8) | (uint16_t)buffer[0];
/* 6. Compute the Temperature value by linea r interpolation*/
tmp32 = ((uint32_t)(T_out - T0_out)) * ((uint32_t)(T1_degC - T0_degC)*10);
*value = tmp32 /(T1_out - T0_out) + T0_degC*10;
return HTS221_OK;
}
int main()
{
HTS221_Error_et ret;
uint8_t deviceid;
HTS221_Get_DeviceID(&deviceid);
HTS221_Init_st init_st;
init_st.avg_h = HTS221_AVGH_4;
init_st.avg_t = HTS221_AVGT_4;
init_st.odr = HTS221_ODR_1HZ;
init_st.bdu_status = HTS221_ENABLE;
init_st.heater_status = HTS221_ENABLE;
init_st.irq_level = HTS221_HIGH_LVL;
init_st.irq_output_type = HTS221_PUSHPULL;
init_st.irq_enable = HTS221_DISABLE;
HTS221_Set_InitConfig(&init_st);
if(deviceid != HTS221_WHO_AM_I_VAL) {
printf("HTS221 Not Found!\r\n");
while(1) {
myled=!myled;
wait(0.2);
}
} else {
printf("HTS221 Has Found!\r\n");
}
HTS221_Activate();
HTS221_BitStatus_et mode;
HTS221_Get_PowerDownMode(&mode);
if(mode == HTS221_SET) {
printf("HTS221 in power down mode\r\n");
ret = HTS221_Set_PowerDownMode(HTS221_RESET);
if(ret != HTS221_OK) {
printf("HTS221_Set_PowerDownMode failed");
}
}
HTS221_Get_PowerDownMode(&mode);
if(mode == HTS221_SET) {
printf("HTS221 in power down mode\r\n");
ret = HTS221_Set_PowerDownMode(HTS221_RESET);
if(ret != HTS221_OK) {
printf("HTS221_Set_PowerDownMode failed");
}
}
HTS221_Set_BduMode(HTS221_DISABLE);
uint16_t humidity;
int16_t temperature;
uint16_t humi;
int16_t temp;
int16_t temp2;
HTS221_DrdyLevel_et level = HTS221_LOW_LVL ;
printf("pre level=%02x\r\n",level);
HTS221_Set_IrqActiveLevel(HTS221_HIGH_LVL);
HTS221_Get_IrqActiveLevel(&level);
printf("aft level=%d\r\n",level);
// while(1) {
// HTS221_StartOneShotMeasurement();
//
// ret = HTS221_Get_Measurement(&humidity,&temperature);
// if(ret==HTS221_OK){
// printf("humidity:%d%%,temperature:%dC\r\n",humidity/10,temperature/10);
// }else
// {
// printf("GET Measurement failed\r\n");
// }
// ret = HTS221_Get_Humidity(&humi);
// if(ret==HTS221_OK){
// printf("humi:%d\r\n",humi);
// }else
// {
// printf("GET humi failed\r\n");
// }
//
// ret = HTS221_Get_Temperature(&temp);
// if(ret==HTS221_OK){
// printf("temp:%d\r\n",temp);
// }else
// {
// printf("GET temp failed\r\n");
// }
//
//
//
// ret = HTS221_Get_Temperature1(&temp2);
//
// if(ret==HTS221_OK){
// printf("temp2:%d\r\n",temp2);
// }else
// {
// printf("GET temp2 failed\r\n");
// }
//
//
// wait(1);
// }
//Find the HTS221
data_write[0] = HTS221_WHO_AM_I_REG;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 1, 0);
//turn on the HTS221, set the update mode to one shot
data_write[0] = HTS221_CTRL_REG1;
data_write[1] = 0x84;
int status = i2c.write(0xBE, data_write, 2, 0);
if(status!=0) {
while(1) {
myled=!myled;
wait(0.2);
}
}
read_calidata0();
while(1) {
//perform a measurement
data_write[0] = HTS221_CTRL_REG2;
data_write[1] = 0x01;
i2c.write(0xBE, data_write, 2, 0);
//check the status
status = 0;
while (status != 0x03) { //typical conversition time: 3ms
wait(0.3);
data_write[0] = HTS221_STATUS_REG;
i2c.write(0xBE, data_write, 1, 0);
i2c.read(0xBF,data_read, 1, 0);
status = data_read[0];
wait(0.1);
// printf("status:%d\r\n",status);
}
//read multiple bytes incrementing the register address
data_write[0] = HTS221_HR_OUT_L_REG |0x80;
i2c.write(0xBE, data_write, 1, 1);
i2c.read(0xBF,data_read, 4, 0);
outHumi = (data_read[1] << 8) | data_read[0];
outTemp = (data_read[3] << 8) | data_read[2];
valueTemp = mapFloat(outTemp, t0out, t1out, t0, t1);
valueHumi = mapFloat(outHumi, h0out, h1out, h0, h1);
printf("Temp:%f `C Humi:%f RH \r\n",valueTemp,valueHumi);
led = !led; // Toggle LED
wait(3); // 1 second
}
}