My trial of BME280 library, tested with Adafruit BME280 module
BME280.cpp
- Committer:
- Rhyme
- Date:
- 2017-05-09
- Revision:
- 0:5ace1cc7a9f2
- Child:
- 1:7b525853bad0
File content as of revision 0:5ace1cc7a9f2:
#include "mbed.h"
#include "BME280.h"
/* internal registers */
#define REG_HUM_LSB 0xFE
#define REG_HUM_MSB 0xFD
#define REG_TEMP_XLSB 0xFC
#define REG_TEMP_LSB 0xFB
#define REG_TEMP_MSB 0xFA
#define REG_PRESS_XLSB 0xF9
#define REG_PRESS_LSB 0xF8
#define REG_PRESS_MSB 0xF7
#define REG_CONFIG 0xF5
#define REG_CTRL_MEAS 0xF4
#define REG_STATUS 0xF3
#define REG_CTRL_HUM 0xF2
#define REG_RESET 0xE0
#define REG_ID 0xD0
#define REG_CALIB00 0x88
#define REG_CALIB25 0xA1
#define REG_CALIB26 0xE1
#define REG_CALIB41 0xF0
/** Trimming parameters */
/* temperature */
#define REG_T1_LSB 0x88
#define REG_T1_MSB 0x89
#define REG_T2_LSB 0x8A
#define REG_T2_MSB 0x8B
#define REG_T3_LSB 0x8C
#define REG_T3_MSB 0x8D
/* pressure */
#define REG_P1_LSB 0x8E
#define REG_P1_MSB 0x8F
#define REG_P2_LSB 0x90
#define REG_P2_MSB 0x91
#define REG_P3_LSB 0x92
#define REG_P3_MSB 0x93
#define REG_P4_LSB 0x94
#define REG_P4_MSB 0x95
#define REG_P5_LSB 0x96
#define REG_P5_MSB 0x97
#define REG_P6_LSB 0x98
#define REG_P6_MSB 0x99
#define REG_P7_LSB 0x9A
#define REG_P7_MSB 0x9B
#define REG_P8_LSB 0x9C
#define REG_P8_MSB 0x9D
#define REG_P9_LSB 0x9E
#define REG_P9_MSB 0x9F
/* humidity */
#define REG_H1 0xA1
#define REG_H2_LSB 0xE1
#define REG_H2_MSB 0xE2
#define REG_H3 0xE3
/*
* Register description
* 0xD0 "id"
* chip identification number chip_id[7:0], which is 0x60
*
* 0xE0 "reset"
* Software reset register, writing 0xB6 causes complete power-on-reset.
*
* 0xF2 "ctrl_hum"
* Specifies the humidity data acquision options.
* Note: Changes to this register only become effective after a write
* operaion to "ctrl_meas".
* bit[2:0] osrs_h[2:0] Controls oversampling of humidity data.
* 000: Skipped (output set to 0x8000)
* 001: oversampling x1
* 010: oversampling x2
* 011: oversampling x4
* 100: oversampling x8
* 101, others, oversampling x16
*
* 0xF3 "status"
* bit[3] measuring[0] Automatically set to '1' during conversion
* and back to '0' when done
* bit[0] im_update[0] Automatically set to '1' during NVM data copy
* and back to '0' when done
*
* 0xF4 "ctrl_meas"
* Specifies the pressure and temperature data acquision options.
* Note: This register needs to be written after canging "ctrl_hum" to take effect.
* bit[7:5] osrs_t[2:0] Controls oversampling of temperature data
* bit value is similar to osrs_h (except 000 output set to 0x80000)
* bit[4:2] osrs_p[2:0] Controls oversampling of pressure data
* bit value is similar to osrs_h (except 000 output set to 0x80000)
* bit[1:0] mode[1:0] Controls the sensor mode.
* 00: Sleep mode
* 01: Forced mode
* 10: Forced mode
* 11: Normal mode
*
* 0xF5 "config"
* Specifies the rate, filter and interface options.
* Writes to "config" in normal mode may be ignored.
* In sleep mode writes are not ignored.
* bit[7:5] t_sb[2:0] Controls inactive duration t_standby in normal mode.
* 000: 0.5 [ms]
* 001: 62.5 [ms]
* 010: 125 [ms]
* 011: 250 [ms]
* 100: 500 [ms]
* 101: 1000 [ms]
* 110: 10 [ms]
* 111: 20 [ms]
* bit[4:2] filter[2:0] Controls the time constant of the IIR filter.
* 000: Filter off
* 001: 2
* 010: 4
* 011: 8
* 100, others: 16
*
* 0xF7 .. 0xF9 "press" (_msb, _lsb, _xlsb)
* 0xF7 bit[7:0] press_msb[7:0] MSB part up[19:12]
* 0xF8 bit[7:0] press_lsb[7:0] LSB part up[11:4]
* 0xF9 bit[7:4] press_xlsb[3:0] XLSB part up[3:0]
*
* 0xFA .. 0xFC "temp" (_msb, _lsb, _xlsb)
* 0xFA bit[7:0] temp_msb[7:0] MSB part ut[19:12]
* 0xFB bit[7:0] temp_lsb[7:0] LSB part ut[11:4]
* 0xFC bit[7:4] temp_xlsp[3:0] XLSB part ut[3:0]
*
* 0xFD .. 0xFE "hum" (_msb, _lsb)
* 0xFD bit[7:0] hum_msb[7:0] MSB part uh[15:8]
* 0xFE bit[7:0] hum_lsb[7:0] LSB part uh[7:0]
*/
void BME280::init(void)
{
uint8_t data[18] ;
data[0] = REG_CTRL_HUM ;
data[1] = 0x03 ; /* Humidity oversampling x4 */
writeRegs(data, 2) ;
data[0] = REG_CTRL_MEAS ;
data[1] = (0x3 << 5) /* temp oversample x4 */
| (0x3 << 3) /* pres oversample x4 */
| (0x00) /* Sleep Mode */
;
writeRegs(data, 2) ;
readRegs(REG_CTRL_MEAS, data, 1) ;
printf("ctrl_meas: 0x%02X\n", data[0]) ;
data[0] = REG_CONFIG ;
data[1] = (0x4 << 5) /* standby 500ms */
| (0x0 << 2) /* filter off */
| (0x0) /* spi 4wire mode */
;
writeRegs(data, 2) ;
/* read dig_T regs */
readRegs(REG_T1_LSB, data, 6) ;
dig_T1 = (data[1] << 8) | data[0] ;
dig_T2 = (data[3] << 8) | data[2] ;
dig_T3 = (data[5] << 8) | data[4] ;
// printf("dig_T1:0x%04X, dig_T2:0x%04X, dig_T3:0x%04X\n",dig_T1, dig_T2, dig_T3) ;
/* read dig_P regs */
readRegs(REG_P1_LSB, data, 18) ;
dig_P1 = (data[ 1] << 8) | data[ 0] ;
dig_P2 = (data[ 3] << 8) | data[ 2] ;
dig_P3 = (data[ 5] << 8) | data[ 4] ;
dig_P4 = (data[ 7] << 8) | data[ 6] ;
dig_P5 = (data[ 9] << 8) | data[ 8] ;
dig_P6 = (data[11] << 8) | data[10] ;
dig_P7 = (data[13] << 8) | data[12] ;
dig_P8 = (data[15] << 8) | data[14] ;
dig_P9 = (data[17] << 8) | data[16] ;
// printf("dig_P1:0x%04X, dig_P2:0x%04X, dig_P3:0x%04X\n",dig_P1, dig_P2, dig_P3) ;
// printf("dig_P4:0x%04X, dig_P5:0x%04X, dig_P6:0x%04X\n",dig_P4, dig_P5, dig_P6) ;
// printf("dig_P7:0x%04X, dig_P8:0x%04X, dig_P9:0x%04X\n",dig_P7, dig_P8, dig_P9) ;
/* read dig_H regs */
readRegs(REG_H1, data, 1) ;
dig_H1 = data[0] ;
readRegs(REG_H2_LSB, data, 3) ;
dig_H2 = (data[1] << 8) | data[0] ;
dig_H3 = data[2] ;
// printf("dig_H1:0x%04X, dig_H2:0x%04X, dig_H3:0x%04X\n",dig_H1, dig_H2, dig_H3) ;
}
BME280::BME280(PinName sda, PinName scl, int addr)
{
m_i2c = new I2C(sda, scl) ;
m_addr = (addr << 1) ;
m_spi = 0 ;
m_cs = 0 ;
init() ;
}
BME280::BME280(PinName sck, PinName miso, PinName mosi, PinName cs)
{
m_cs = new DigitalOut(cs, 1) ;
m_spi = new SPI(mosi, miso, sck) ;
m_spi->format(8, 3) ;
#if 0
#if defined (TARGET_KL25Z)
*((uint8_t *)0x40076000) |= 0x01 ; /* lsb first */
#endif
#endif
m_i2c = 0 ;
m_addr = 0 ;
init() ;
}
BME280::~BME280()
{
if (m_spi) {
delete m_spi ;
delete m_cs ;
}
if (m_i2c) {
delete m_i2c ;
m_addr = 0 ;
}
}
void BME280::i2c_readRegs(int addr, uint8_t * data, int len) {
char t[1] = {addr} ;
m_i2c->write(m_addr, t, 1, true) ;
m_i2c->read(m_addr, (char*)data, len) ;
}
void BME280::i2c_writeRegs(uint8_t * data, int len) {
m_i2c->write(m_addr, (char *)data, len) ;
}
void BME280::spi_readRegs(int addr, uint8_t * data, int len) {
*m_cs = 0 ;
m_spi->write(addr | 0x80) ;
for (int i = 0 ; i < len ; i++ ) {
// m_spi->write((addr+i)|0x80) ; // spacify address to read
data[i] = m_spi->write((addr+i)|0x80) ;
}
m_spi->write(0x00) ; // to terminate read mode
*m_cs = 1 ;
}
void BME280::spi_writeRegs(uint8_t * data, int len) {
*m_cs = 0 ;
for (int i = 0 ; i < len-1 ; i++ ) {
// printf("writing 0x%02X := 0x%02X\n", (data[0]+i)^0x80, data[i+1]) ;
m_spi->write((data[0]+i)^0x80) ; /* register address */
m_spi->write(data[i+1]) ; /* data to write */
}
*m_cs = 1 ;
}
void BME280::readRegs(int addr, uint8_t *data, int len)
{
if (m_spi) {
spi_readRegs(addr, data, len) ;
} else if (m_i2c) {
i2c_readRegs(addr, data, len) ;
}
}
void BME280::writeRegs(uint8_t *data, int len)
{
if (m_spi) {
spi_writeRegs(data, len) ;
} else if (m_i2c) {
i2c_writeRegs(data, len) ;
}
}
void BME280::reset(void)
{
uint8_t data[2] ;
data[0] = REG_RESET ;
data[1] = 0xB6 ;
writeRegs(data, 2) ;
}
void BME280::trigger(void)
{
uint8_t data[2] ;
readRegs(REG_CTRL_MEAS, &data[1], 1) ;
data[0] = REG_CTRL_MEAS ;
data[1] = (data[1] & 0xFC) /* keep oversampling */
| (0x2) /* Forced Mode */
;
// data[1] = 0x38 | 0x02 ;
writeRegs(data, 2) ;
}
uint8_t BME280::busy(void)
{
uint8_t data[1] ;
readRegs(REG_STATUS, data, 1) ;
return( data[0] & 0x9 ) ;
}
uint8_t BME280::getID(void)
{
uint8_t data[1] ;
readRegs(REG_ID, data, 1) ;
return(data[0]) ;
}
void BME280::readData(uint8_t data[])
{
readRegs(REG_PRESS_MSB, data, 8) ;
printf("Data Read: ") ;
for(int i = 0 ; i < 8 ; i++ ) {
printf("%02X ", data[i]) ;
}
printf("\n") ;
}
float BME280::getTemperature(uint8_t data[])
{
uint32_t temp_raw;
float tempf;
// uint8_t data[3];
// readRegs(REG_TEMP_MSB, data, 3) ;
temp_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
int32_t temp;
temp =
(((((temp_raw >> 3) - (dig_T1 << 1))) * dig_T2) >> 11) +
((((((temp_raw >> 4) - dig_T1) * ((temp_raw >> 4) - dig_T1)) >> 12) * dig_T3) >> 14);
t_fine = temp;
temp = (temp * 5 + 128) >> 8;
tempf = (float)temp;
return (tempf/100.0f);
}
float BME280::getHumidity(uint8_t data[])
{
uint32_t hum_raw;
float humf;
// uint8_t data[2];
// readRegs(REG_HUM_MSB, data, 2) ;
hum_raw = (data[0] << 8) | data[1];
int32_t v_x1;
v_x1 = t_fine - 76800;
v_x1 = (((((hum_raw << 14) -(((int32_t)dig_H4) << 20) - (((int32_t)dig_H5) * v_x1)) +
((int32_t)16384)) >> 15) * (((((((v_x1 * (int32_t)dig_H6) >> 10) *
(((v_x1 * ((int32_t)dig_H3)) >> 11) + 32768)) >> 10) + 2097152) *
(int32_t)dig_H2 + 8192) >> 14));
v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * (int32_t)dig_H1) >> 4));
v_x1 = (v_x1 < 0 ? 0 : v_x1);
v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
humf = (float)(v_x1 >> 12);
return (humf/1024.0f);
}
float BME280::getPressure(uint8_t data[])
{
uint32_t press_raw;
float pressf;
// uint8_t data[3];
// readRegs(REG_PRESS_MSB, data, 3) ;
press_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
int32_t var1, var2;
uint32_t press;
var1 = (t_fine >> 1) - 64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * dig_P6;
var2 = var2 + ((var1 * dig_P5) << 1);
var2 = (var2 >> 2) + (dig_P4 << 16);
var1 = (((dig_P3 * (((var1 >> 2)*(var1 >> 2)) >> 13)) >> 3) + ((dig_P2 * var1) >> 1)) >> 18;
var1 = ((32768 + var1) * dig_P1) >> 15;
if (var1 == 0) {
return 0;
}
press = (((1048576 - press_raw) - (var2 >> 12))) * 3125;
if(press < 0x80000000) {
press = (press << 1) / var1;
} else {
press = (press / var1) * 2;
}
var1 = ((int32_t)dig_P9 * ((int32_t)(((press >> 3) * (press >> 3)) >> 13))) >> 12;
var2 = (((int32_t)(press >> 2)) * (int32_t)dig_P8) >> 13;
press = (press + ((var1 + var2 + dig_P7) >> 4));
pressf = (float)press;
return (pressf/100.0f);
}