Tobis Programm forked to not destroy your golden files
Fork of Robocode by
source/Mapping.cpp
- Committer:
- cittecla
- Date:
- 2017-05-15
- Revision:
- 129:0f60bf9640bb
- Parent:
- 128:6bde4483ce7b
- Child:
- 130:670a954495bf
File content as of revision 129:0f60bf9640bb:
/** * Mapping function library * Handels Mapping of the arena and LEGO-stones **/ #include "Mapping.h" #define list_time_value 60 #define list_target_value 1 #define list_boundry_value 255 #define servo_angle 50 uint8_t obstacle_list[row][col] = { 0 }; uint8_t target_list[row][col] = {0}; uint8_t a = list_time_value; //Substitution um Matrix übersichtlich zu halten uint8_t superpos[7][7] = {{0,0,a,a,a,0,0}, {0,a,a,a,a,a,0}, {a,a,a,a,a,a,a}, {a,a,a,a,a,a,a}, {a,a,a,a,a,a,a}, {0,a,a,a,a,a,0}, {0,0,a,a,a,0,0} }; position old_pos = {0}; float old_heading = 0; //****************************************************************************** void mapping() { printf("mapping...\r\n"); position current_pos = get_current_pos(); float current_heading = get_current_heading(); if(old_heading != current_heading || old_pos.x != current_pos.x || old_pos.y != current_pos.y) { //check_sensor(left); float distance0 = getDistanceIR(0); if(distance0 < 0.75f && distance0 > 0.1f) { set_servo_position(0, servo_angle); float distance = getDistanceIR(1); int object = 0; if(distance < 0.75f && distance > 0.1f && (distance -0.05f < distance0 || distance + 0.05f > distance0)) { object = 0; } else { object = 1; } position mapping_pos = position_calculation(distance0, servo_angle, 0.12, -0.12, current_heading, current_pos); draw_to_map(mapping_pos, object); } //check_sensor(right); float distance4 = getDistanceIR(4); if(distance4 < 0.75f && distance4 > 0.1f) { set_servo_position(2, -servo_angle); float distance = getDistanceIR(5); int object = 0; if(distance < 0.75f && distance > 0.1f && (distance -0.05f < distance4 || distance + 0.05f > distance4)) { object = 0; } else { object = 1; } position mapping_pos = position_calculation(distance4, -servo_angle, -0.12, -0.12, current_heading, current_pos); draw_to_map(mapping_pos, object); } //check_sensor(center); float distance2 = getDistanceIR(2); if(distance2 < 0.75f && distance2 > 0.1f) { float distance = getDistanceIR(3); int object = 0; if(distance < 0.75f && distance > 0.1f && (distance -0.05f < distance2 || distance + 0.05f > distance2)) { object = 0; } else { object = 1; } position mapping_pos = position_calculation(distance2, 0, -0.12, -0.12, current_heading, current_pos); draw_to_map(mapping_pos, object); } old_pos = current_pos; old_heading = current_heading; } } /** * draws something on the map, object defines what to draw * 0 = obstacle * 1 = target * 2 = * by Claudio Citterio **/ void draw_to_map(position pos, int object) { uint8_t x_negative_offset = 0; uint8_t x_positive_offset = 0; uint8_t y_negative_offset = 0; uint8_t y_positive_offset = 0; if (pos.x < 5) { x_negative_offset = 3 - pos.x; } if (pos.x > (col-5)) { x_positive_offset = pos.x - (col - 4); } if (pos.y < 5) { y_negative_offset = 3 - pos.y; } if (pos.y > (row-5)) { y_positive_offset = pos.y - (row - 4); } for (int y = 0 + y_negative_offset; y < 7 - y_positive_offset; y++) { for (int x = 0 + x_negative_offset; x < 7 - x_positive_offset; x++) { switch(object) { case 0: a = list_time_value; obstacle_list[pos.y - 3 + y][pos.x - 3 + x] = superpos[y][x]; break; case 1: a = list_target_value; target_list[pos.y - 3 + y][pos.x - 3 + x] = superpos[y][x]; break; case 2: a = list_boundry_value; target_list[pos.y - 3 + y][pos.x - 3 + x] = superpos[y][x]; break; default: break; } } } } //****************************************************************************** /** * prints map defined by list * 0 = obstacle_list * 1 = open_list * 2 = target_list * very slow, shouldn't be called in final code * by Claudio Citterio **/ void print_map(int list) { // Debug function for printing the obstacle matrix on putty. for (int y = 0; y < col; y++) { for (int x = 0; x < row; x++) { if(list == 0)printf("%d ", obstacle_list[y][x]); if(list == 1)printf("%d ", open_list[y][x]); if(list == 2)printf("%d ", target_list[y][x]); } printf("\r\n"); } printf("\r\n"); } //****************************************************************************** /** * calculates a position given by numerouse distances and angels * is called by mapping to define where to object is * by Claudio Citterio **/ position position_calculation(float distance, float degree, float offsetx, float offsety, float heading, position current_pos) { distance *= 100; offsetx *= 100; offsety *= 100; position pos = { 0 }; float direction = 0; float x = (offsetx + sin(degree/180*(float)M_PI)*distance)/4; float y = (-offsety - cos(degree/180*(float)M_PI)*distance)/4; float hyp = sqrt(x*x+y*y); direction = asin(x/hyp)/(float)M_PI*180; direction += heading; while (direction >= 360) direction -= 360; while (direction < 0) direction += 360; printf("%f || %f || %f || %f\r\n", x, y, hyp, degree); if ((0 <= direction && direction < 90) || (180 <= direction && direction < 270)) { pos.x = current_pos.x + rint(sin(direction / 180 * (float)M_PI)*hyp); pos.y = current_pos.y - rint(cos(direction / 180 * (float)M_PI)*hyp); printf("%d || %d\r\n", pos.x,pos.y); } if ((90 <= direction && direction < 180) || (270 <= direction && direction < 360)) { pos.x = current_pos.x + rint(sin((180-direction) / 180 * (float)M_PI)*hyp); pos.y = current_pos.y + rint(cos((180-direction) / 180 * (float)M_PI)*hyp); printf("%d || %d\r\n", pos.x, pos.y); } return pos; } coordinates coordinates_calculation(float distance, float degree, float offsetx, float offsety, float heading, coordinates current_coord) { distance *= 100; offsetx *= 100; offsety *= 100; coordinates coord = { 0 }; float direction = 0; float x = (offsetx + sin(degree/180*(float)M_PI)*distance)/4; float y = (-offsety - cos(degree/180*(float)M_PI)*distance)/4; float hyp = sqrt(x*x+y*y); direction = asin(x/hyp)/(float)M_PI*180; direction += heading; while (direction >= 360) direction -= 360; while (direction < 0) direction += 360; printf("%f || %f || %f || %f\n", x, y, hyp, degree); if ((0 <= direction && direction < 90) || (180 <= direction && direction < 270)) { coord.x = current_coord.x + sin(direction / 180 * (float)M_PI)*hyp; coord.y = current_coord.y - cos(direction / 180 * (float)M_PI)*hyp; printf("%f || %f\n", coord.x,coord.y); } if ((90 <= direction && direction < 180) || (270 <= direction && direction < 360)) { coord.x = current_coord.x + sin((180-direction) / 180 * (float)M_PI)*hyp; coord.y = current_coord.y + cos((180-direction) / 180 * (float)M_PI)*hyp; printf("%f || %f\n", coord.x, coord.y); } return coord; } /** * selects closest target from current position * targets ar printed as 1 in target_list * by Claudio Citterio **/ int select_target() { position myPos = get_current_pos(); position diff = {0}; target.x = 0; int closest_dist = 10000; int current_dist = 0; for(int i = 0; i < row; i++) { for(int j = 0; j < col; j++) { if(target_list[i][j] == 1) { diff.x = abs(myPos.x - j); diff.y = abs(myPos.y - i); current_dist = diff.x * diff.y; if(current_dist < closest_dist) { closest_dist = current_dist; target.x = j; target.y = i; } } } } if(target.x == 0) { return 48; // No Target found } else { start = get_current_pos(); printf("start: %d || %d\r\n", start.x, start.y); printf("Target: %d || %d\r\n", target.x, target.y); return 36; // Target found } } int generate_fake_target(){ position pos = {50,50}; draw_to_map(pos,1); return 35; } //****************************************************************************** int switch_target_red() { obstacle_list[target.y][target.x] = 0; return 0; }