Adafruit driver converted to Mbed OS 6.x.

Dependents:   Adafruit-BNO055-test

quaternion.h

Committer:
MACRUM
Date:
6 months ago
Revision:
3:7db662f5d402
Parent:
0:22c544c8741a

File content as of revision 3:7db662f5d402:

/*
    Inertial Measurement Unit Maths Library
    Copyright (C) 2013-2014  Samuel Cowen
	www.camelsoftware.com

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/


#ifndef IMUMATH_QUATERNION_HPP
#define IMUMATH_QUATERNION_HPP

#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>

#include "vector.h"


namespace imu
{



class Quaternion
{
public:
    Quaternion()
    {
        _w = 1.0;
        _x = _y = _z = 0.0;
    }

    Quaternion(double iw, double ix, double iy, double iz)
    {
        _w = iw;
        _x = ix;
        _y = iy;
        _z = iz;
    }

    Quaternion(double w, Vector<3> vec)
    {
        _w = w;
        _x = vec.x();
        _y = vec.y();
        _z = vec.z();
    }

    double& w()
    {
        return _w;
    }
    double& x()
    {
        return _x;
    }
    double& y()
    {
        return _y;
    }
    double& z()
    {
        return _z;
    }

    double w() const
    {
        return _w;
    }
    double x() const
    {
        return _x;
    }
    double y() const
    {
        return _y;
    }
    double z() const
    {
        return _z;
    }

    double magnitude() const
    {
        double res = (_w*_w) + (_x*_x) + (_y*_y) + (_z*_z);
        return sqrt(res);
    }

    void normalize()
    {
        double mag = magnitude();
        *this = this->scale(1/mag);
    }


    Quaternion conjugate() const
    {
        Quaternion q;
        q.w() = _w;
        q.x() = -_x;
        q.y() = -_y;
        q.z() = -_z;
        return q;
    }

    void fromAxisAngle(Vector<3> axis, double theta)
    {
        _w = cos(theta/2);
        //only need to calculate sine of half theta once
        double sht = sin(theta/2);
        _x = axis.x() * sht;
        _y = axis.y() * sht;
        _z = axis.z() * sht;
    }

    void fromMatrix(Matrix<3> m)
    {
        float tr = m(0, 0) + m(1, 1) + m(2, 2);

        float S = 0.0;
        if (tr > 0)
        {
            S = sqrt(tr+1.0) * 2;
            _w = 0.25 * S;
            _x = (m(2, 1) - m(1, 2)) / S;
            _y = (m(0, 2) - m(2, 0)) / S;
            _z = (m(1, 0) - m(0, 1)) / S;
        }
        else if ((m(0, 0) < m(1, 1))&(m(0, 0) < m(2, 2)))
        {
            S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2;
            _w = (m(2, 1) - m(1, 2)) / S;
            _x = 0.25 * S;
            _y = (m(0, 1) + m(1, 0)) / S;
            _z = (m(0, 2) + m(2, 0)) / S;
        }
        else if (m(1, 1) < m(2, 2))
        {
            S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2;
            _w = (m(0, 2) - m(2, 0)) / S;
            _x = (m(0, 1) + m(1, 0)) / S;
            _y = 0.25 * S;
            _z = (m(1, 2) + m(2, 1)) / S;
        }
        else
        {
            S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2;
            _w = (m(1, 0) - m(0, 1)) / S;
            _x = (m(0, 2) + m(2, 0)) / S;
            _y = (m(1, 2) + m(2, 1)) / S;
            _z = 0.25 * S;
        }
    }

    void toAxisAngle(Vector<3>& axis, float& angle) const
    {
        float sqw = sqrt(1-_w*_w);
        if(sqw == 0) //it's a singularity and divide by zero, avoid
            return;

        angle = 2 * acos(_w);
        axis.x() = _x / sqw;
        axis.y() = _y / sqw;
        axis.z() = _z / sqw;
    }

    Matrix<3> toMatrix() const
    {
        Matrix<3> ret;
        ret.cell(0, 0) = 1-(2*(_y*_y))-(2*(_z*_z));
        ret.cell(0, 1) = (2*_x*_y)-(2*_w*_z);
        ret.cell(0, 2) = (2*_x*_z)+(2*_w*_y);

        ret.cell(1, 0) = (2*_x*_y)+(2*_w*_z);
        ret.cell(1, 1) = 1-(2*(_x*_x))-(2*(_z*_z));
        ret.cell(1, 2) = (2*(_y*_z))-(2*(_w*_x));

        ret.cell(2, 0) = (2*(_x*_z))-(2*_w*_y);
        ret.cell(2, 1) = (2*_y*_z)+(2*_w*_x);
        ret.cell(2, 2) = 1-(2*(_x*_x))-(2*(_y*_y));
        return ret;
    }


    // Returns euler angles that represent the quaternion.  Angles are
    // returned in rotation order and right-handed about the specified
    // axes:
    //
    //   v[0] is applied 1st about z (ie, roll)
    //   v[1] is applied 2nd about y (ie, pitch)
    //   v[2] is applied 3rd about x (ie, yaw)
    //
    // Note that this means result.x() is not a rotation about x;
    // similarly for result.z().
    //
    Vector<3> toEuler() const
    {
        Vector<3> ret;
        double sqw = _w*_w;
        double sqx = _x*_x;
        double sqy = _y*_y;
        double sqz = _z*_z;

        ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw));
        ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw));
        ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw));

        return ret;
    }

    Vector<3> toAngularVelocity(float dt) const
    {
        Vector<3> ret;
        Quaternion one(1.0, 0.0, 0.0, 0.0);
        Quaternion delta = one - *this;
        Quaternion r = (delta/dt);
        r = r * 2;
        r = r * one;

        ret.x() = r.x();
        ret.y() = r.y();
        ret.z() = r.z();
        return ret;
    }

    Vector<3> rotateVector(Vector<2> v) const
    {
        Vector<3> ret(v.x(), v.y(), 0.0);
        return rotateVector(ret);
    }

    Vector<3> rotateVector(Vector<3> v) const
    {
        Vector<3> qv(this->x(), this->y(), this->z());
        Vector<3> t;
        t = qv.cross(v) * 2.0;
        return v + (t * _w) + qv.cross(t);
    }


    Quaternion operator * (Quaternion q) const
    {
        Quaternion ret;
        ret._w = ((_w*q._w) - (_x*q._x) - (_y*q._y) - (_z*q._z));
        ret._x = ((_w*q._x) + (_x*q._w) + (_y*q._z) - (_z*q._y));
        ret._y = ((_w*q._y) - (_x*q._z) + (_y*q._w) + (_z*q._x));
        ret._z = ((_w*q._z) + (_x*q._y) - (_y*q._x) + (_z*q._w));
        return ret;
    }

    Quaternion operator + (Quaternion q) const
    {
        Quaternion ret;
        ret._w = _w + q._w;
        ret._x = _x + q._x;
        ret._y = _y + q._y;
        ret._z = _z + q._z;
        return ret;
    }

    Quaternion operator - (Quaternion q) const
    {
        Quaternion ret;
        ret._w = _w - q._w;
        ret._x = _x - q._x;
        ret._y = _y - q._y;
        ret._z = _z - q._z;
        return ret;
    }

    Quaternion operator / (float scalar) const
    {
        Quaternion ret;
        ret._w = this->_w/scalar;
        ret._x = this->_x/scalar;
        ret._y = this->_y/scalar;
        ret._z = this->_z/scalar;
        return ret;
    }

    Quaternion operator * (float scalar) const
    {
        Quaternion ret;
        ret._w = this->_w*scalar;
        ret._x = this->_x*scalar;
        ret._y = this->_y*scalar;
        ret._z = this->_z*scalar;
        return ret;
    }

    Quaternion scale(double scalar) const
    {
        Quaternion ret;
        ret._w = this->_w*scalar;
        ret._x = this->_x*scalar;
        ret._y = this->_y*scalar;
        ret._z = this->_z*scalar;
        return ret;
    }

private:
    double _w, _x, _y, _z;
};


};

#endif