キーボードの長押しに対応。

Dependents:   PS4_FF14_Adapter

Fork of USBDevice by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHAL_KL25Z.cpp Source File

USBHAL_KL25Z.cpp

00001 /* Copyright (c) 2010-2011 mbed.org, MIT License
00002 *
00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
00004 * and associated documentation files (the "Software"), to deal in the Software without
00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
00007 * Software is furnished to do so, subject to the following conditions:
00008 *
00009 * The above copyright notice and this permission notice shall be included in all copies or
00010 * substantial portions of the Software.
00011 *
00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00017 */
00018 
00019 #if defined(TARGET_KL25Z)
00020 
00021 #include "USBHAL.h"
00022 
00023 USBHAL * USBHAL::instance;
00024 
00025 static volatile int epComplete = 0;
00026 
00027 // Convert physical endpoint number to register bit
00028 #define EP(endpoint) (1<<(endpoint))
00029 
00030 // Convert physical to logical
00031 #define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
00032 
00033 // Get endpoint direction
00034 #define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
00035 #define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)
00036 
00037 #define BD_OWN_MASK        (1<<7)
00038 #define BD_DATA01_MASK     (1<<6)
00039 #define BD_KEEP_MASK       (1<<5)
00040 #define BD_NINC_MASK       (1<<4)
00041 #define BD_DTS_MASK        (1<<3)
00042 #define BD_STALL_MASK      (1<<2)
00043 
00044 #define TX    1
00045 #define RX    0
00046 #define ODD   0
00047 #define EVEN  1
00048 // this macro waits a physical endpoint number
00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 *  odd)))
00050 
00051 #define SETUP_TOKEN    0x0D
00052 #define IN_TOKEN       0x09
00053 #define OUT_TOKEN      0x01
00054 #define TOK_PID(idx)   ((bdt[idx].info >> 2) & 0x0F)
00055 
00056 // for each endpt: 8 bytes
00057 typedef struct BDT {
00058     uint8_t   info;       // BD[0:7]
00059     uint8_t   dummy;      // RSVD: BD[8:15]
00060     uint16_t  byte_count; // BD[16:32]
00061     uint32_t  address;    // Addr
00062 } BDT; 
00063 
00064 
00065 // there are:
00066 //    * 16 bidirectionnal endpt -> 32 physical endpt
00067 //    * as there are ODD and EVEN buffer -> 32*2 bdt
00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
00069 uint8_t endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2][64];
00070 uint8_t endpoint_buffer_iso[2*2][1023];
00071 
00072 static uint8_t set_addr = 0;
00073 static uint8_t addr = 0;
00074 
00075 static uint32_t Data1  = 0x55555555;
00076 
00077 static uint32_t frameNumber() {
00078     return((USB0->FRMNUML | (USB0->FRMNUMH << 8) & 0x07FF));
00079 }
00080 
00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
00082     return 0;
00083 }
00084 
00085 USBHAL::USBHAL(void) {    
00086     // Disable IRQ
00087     NVIC_DisableIRQ(USB0_IRQn);
00088     
00089     // fill in callback array
00090     epCallback[0] = &USBHAL::EP1_OUT_callback;
00091     epCallback[1] = &USBHAL::EP1_IN_callback;
00092     epCallback[2] = &USBHAL::EP2_OUT_callback;
00093     epCallback[3] = &USBHAL::EP2_IN_callback;
00094     epCallback[4] = &USBHAL::EP3_OUT_callback;
00095     epCallback[5] = &USBHAL::EP3_IN_callback;
00096     epCallback[6] = &USBHAL::EP4_OUT_callback;
00097     epCallback[7] = &USBHAL::EP4_IN_callback;
00098     epCallback[8] = &USBHAL::EP5_OUT_callback;
00099     epCallback[9] = &USBHAL::EP5_IN_callback;
00100     epCallback[10] = &USBHAL::EP6_OUT_callback;
00101     epCallback[11] = &USBHAL::EP6_IN_callback;
00102     epCallback[12] = &USBHAL::EP7_OUT_callback;
00103     epCallback[13] = &USBHAL::EP7_IN_callback;
00104     epCallback[14] = &USBHAL::EP8_OUT_callback;
00105     epCallback[15] = &USBHAL::EP8_IN_callback;
00106     epCallback[16] = &USBHAL::EP9_OUT_callback;
00107     epCallback[17] = &USBHAL::EP9_IN_callback;
00108     epCallback[18] = &USBHAL::EP10_OUT_callback;
00109     epCallback[19] = &USBHAL::EP10_IN_callback;
00110     epCallback[20] = &USBHAL::EP11_OUT_callback;
00111     epCallback[21] = &USBHAL::EP11_IN_callback;
00112     epCallback[22] = &USBHAL::EP12_OUT_callback;
00113     epCallback[23] = &USBHAL::EP12_IN_callback;
00114     epCallback[24] = &USBHAL::EP13_OUT_callback;
00115     epCallback[25] = &USBHAL::EP13_IN_callback;
00116     epCallback[26] = &USBHAL::EP14_OUT_callback;
00117     epCallback[27] = &USBHAL::EP14_IN_callback;
00118     epCallback[28] = &USBHAL::EP15_OUT_callback;
00119     epCallback[29] = &USBHAL::EP15_IN_callback;
00120     
00121     
00122     // choose usb src as PLL
00123     SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK);
00124     
00125     // enable OTG clock
00126     SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
00127 
00128     // Attach IRQ
00129     instance = this;
00130     NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
00131     NVIC_EnableIRQ(USB0_IRQn);
00132     
00133     // USB Module Configuration
00134     // Reset USB Module
00135     USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
00136     while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
00137     
00138     // Set BDT Base Register
00139     USB0->BDTPAGE1=(uint8_t)((uint32_t)bdt>>8);
00140     USB0->BDTPAGE2=(uint8_t)((uint32_t)bdt>>16);
00141     USB0->BDTPAGE3=(uint8_t)((uint32_t)bdt>>24);
00142 
00143     // Clear interrupt flag
00144     USB0->ISTAT = 0xff;
00145 
00146     // USB Interrupt Enablers
00147     USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK | 
00148                    USB_INTEN_SOFTOKEN_MASK | 
00149                    USB_INTEN_ERROREN_MASK  |
00150                    USB_INTEN_USBRSTEN_MASK;
00151     
00152     // Disable weak pull downs 
00153     USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);   
00154     
00155     USB0->USBTRC0 |= 0x40;
00156 }
00157 
00158 USBHAL::~USBHAL(void) { }
00159 
00160 void USBHAL::connect(void) {
00161     // enable USB
00162     USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
00163     // Pull up enable
00164     USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
00165 }
00166 
00167 void USBHAL::disconnect(void) {
00168     // disable USB
00169     USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
00170     // Pull up disable
00171     USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
00172 }
00173 
00174 void USBHAL::configureDevice(void) {
00175     // not needed
00176 }
00177 
00178 void USBHAL::unconfigureDevice(void) {
00179     // not needed
00180 }
00181 
00182 void USBHAL::setAddress(uint8_t address) {
00183     // we don't set the address now otherwise the usb controller does not ack
00184     // we set a flag instead
00185     // see usbisr when an IN token is received
00186     set_addr = 1;
00187     addr = address;
00188 }
00189 
00190 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
00191     uint32_t handshake_flag = 0;
00192     uint8_t * buf;
00193 
00194     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00195         return false;
00196     }
00197 
00198     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00199 
00200     if ((flags & ISOCHRONOUS) == 0) {
00201         handshake_flag = USB_ENDPT_EPHSHK_MASK;
00202         if (IN_EP(endpoint))
00203             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD )][0];
00204         else
00205             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD )][0];
00206     } else {
00207         if (IN_EP(endpoint))
00208             buf = &endpoint_buffer_iso[2][0];
00209         else
00210             buf = &endpoint_buffer_iso[0][0];
00211     }
00212 
00213     // IN endpt -> device to host (TX)
00214     if (IN_EP(endpoint)) {
00215         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00216                                               USB_ENDPT_EPTXEN_MASK;  // en TX (IN) tran
00217         bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
00218         bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
00219     }
00220     // OUT endpt -> host to device (RX)
00221     else {
00222         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00223                                               USB_ENDPT_EPRXEN_MASK;  // en RX (OUT) tran.
00224         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
00225         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address    = (uint32_t) buf;
00226         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info       = BD_OWN_MASK | BD_DTS_MASK;
00227         bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info       = 0;
00228     }
00229 
00230     Data1 |= (1 << endpoint);
00231 
00232     return true;
00233 }
00234 
00235 // read setup packet
00236 void USBHAL::EP0setup(uint8_t *buffer) {
00237     uint32_t sz;
00238     endpointReadResult(EP0OUT, buffer, &sz);
00239 }
00240 
00241 void USBHAL::EP0readStage(void) {
00242     Data1 &= ~1UL;  // set DATA0
00243     bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
00244 }
00245 
00246 void USBHAL::EP0read(void) {
00247     uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
00248     bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
00249 }
00250 
00251 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
00252     uint32_t sz;
00253     endpointReadResult(EP0OUT, buffer, &sz);
00254     return sz;
00255 }
00256 
00257 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
00258     endpointWrite(EP0IN, buffer, size);
00259 }
00260 
00261 void USBHAL::EP0getWriteResult(void) {
00262 }
00263 
00264 void USBHAL::EP0stall(void) {
00265     stallEndpoint(EP0OUT);
00266 }
00267 
00268 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
00269     endpoint = PHY_TO_LOG(endpoint);
00270     uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
00271     bdt[idx].byte_count = maximumSize;
00272     return EP_PENDING;
00273 }
00274 
00275 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
00276     uint32_t n, sz, idx, setup = 0;
00277     uint8_t not_iso;
00278     uint8_t * ep_buf;
00279     
00280     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00281     
00282     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00283         return EP_INVALID;
00284     }
00285 
00286     // if read on a IN endpoint -> error
00287     if (IN_EP(endpoint)) {
00288         return EP_INVALID;
00289     }
00290 
00291     idx = EP_BDT_IDX(log_endpoint, RX, 0);
00292     sz  = bdt[idx].byte_count;
00293     not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
00294 
00295     //for isochronous endpoint, we don't wait an interrupt
00296     if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
00297         return EP_PENDING;
00298     }
00299 
00300     if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
00301         setup = 1;
00302     }
00303 
00304     // non iso endpoint
00305     if (not_iso) {
00306         ep_buf = endpoint_buffer[idx];
00307     } else {
00308         ep_buf = endpoint_buffer_iso[0];
00309     }
00310 
00311     for (n = 0; n < sz; n++) {
00312         buffer[n] = ep_buf[n];
00313     }
00314 
00315     if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
00316         if (setup && (buffer[6] == 0))  // if no setup data stage,
00317             Data1 &= ~1UL;              // set DATA0
00318         else 
00319             Data1 ^= (1 << endpoint);
00320     }
00321 
00322     if (((Data1 >> endpoint) & 1)) {
00323         bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
00324     }
00325     else {
00326         bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
00327     }
00328         
00329     USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
00330     *bytesRead = sz;
00331 
00332     epComplete &= ~EP(endpoint);
00333     return EP_COMPLETED;
00334 }
00335 
00336 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
00337     uint32_t idx, n;
00338     uint8_t * ep_buf;
00339 
00340     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00341         return EP_INVALID;
00342     }
00343 
00344     // if write on a OUT endpoint -> error
00345     if (OUT_EP(endpoint)) {
00346         return EP_INVALID;
00347     }
00348 
00349     idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
00350     bdt[idx].byte_count = size;
00351     
00352     
00353     // non iso endpoint
00354     if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
00355         ep_buf = endpoint_buffer[idx];
00356     } else {
00357         ep_buf = endpoint_buffer_iso[2];
00358     }
00359     
00360     for (n = 0; n < size; n++) {
00361         ep_buf[n] = data[n];
00362     }
00363     
00364     if ((Data1 >> endpoint) & 1) {
00365         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
00366     } else {
00367         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
00368     }
00369     
00370     Data1 ^= (1 << endpoint);
00371     
00372     return EP_PENDING;
00373 }
00374 
00375 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
00376     if (epComplete & EP(endpoint)) {
00377         epComplete &= ~EP(endpoint);
00378         return EP_COMPLETED;
00379     }
00380 
00381     return EP_PENDING;
00382 }
00383 
00384 void USBHAL::stallEndpoint(uint8_t endpoint) {
00385     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
00386 }
00387 
00388 void USBHAL::unstallEndpoint(uint8_t endpoint) {
00389     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00390 }
00391 
00392 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
00393     uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
00394     return (stall) ? true : false;
00395 }
00396 
00397 void USBHAL::remoteWakeup(void) {
00398     // [TODO]
00399 }
00400 
00401 
00402 void USBHAL::_usbisr(void) {
00403     instance->usbisr();
00404 }
00405 
00406 
00407 void USBHAL::usbisr(void) {
00408     uint8_t i;
00409     uint8_t istat = USB0->ISTAT;
00410 
00411     // reset interrupt
00412     if (istat & USB_ISTAT_USBRST_MASK) {            
00413         // disable all endpt
00414         for(i = 0; i < 16; i++) {
00415             USB0->ENDPOINT[i].ENDPT = 0x00;
00416         }
00417 
00418         // enable control endpoint
00419         realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
00420         realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
00421 
00422         Data1 = 0x55555555;
00423         USB0->CTL |=  USB_CTL_ODDRST_MASK;
00424 
00425         USB0->ISTAT   =  0xFF;  // clear all interrupt status flags
00426         USB0->ERRSTAT =  0xFF;  // clear all error flags
00427         USB0->ERREN   =  0xFF;  // enable error interrupt sources
00428         USB0->ADDR    =  0x00;  // set default address
00429 
00430         return;
00431     }
00432 
00433     // resume interrupt
00434     if (istat & USB_ISTAT_RESUME_MASK) {
00435         USB0->ISTAT = USB_ISTAT_RESUME_MASK;
00436     }
00437 
00438     // SOF interrupt
00439     if (istat & USB_ISTAT_SOFTOK_MASK) {
00440         USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;  
00441         // SOF event, read frame number
00442         SOF(frameNumber());
00443     }
00444     
00445     // stall interrupt
00446     if (istat & 1<<7) {
00447         if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
00448             USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00449         USB0->ISTAT |= USB_ISTAT_STALL_MASK;
00450     }
00451 
00452     // token interrupt
00453     if (istat & 1<<3) {
00454         uint32_t num  = (USB0->STAT >> 4) & 0x0F;
00455         uint32_t dir  = (USB0->STAT >> 3) & 0x01;
00456         uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
00457 
00458         // setup packet
00459         if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
00460             Data1 &= ~0x02;
00461             bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
00462             bdt[EP_BDT_IDX(0, TX, ODD)].info  &= ~BD_OWN_MASK;
00463 
00464             // EP0 SETUP event (SETUP data received)
00465             EP0setupCallback();
00466                     
00467         } else {
00468             // OUT packet
00469             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
00470                 if (num == 0)
00471                     EP0out();
00472                 else {
00473                     epComplete |= (1 << EP(num));
00474                     if ((instance->*(epCallback[EP(num) - 2]))()) {
00475                         epComplete &= ~(1 << EP(num));
00476                     }
00477                 }
00478             }
00479 
00480             // IN packet
00481             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
00482                 if (num == 0) {
00483                     EP0in();
00484                     if (set_addr == 1) {
00485                         USB0->ADDR = addr & 0x7F;
00486                         set_addr = 0;
00487                     }
00488                 }
00489                 else {
00490                     epComplete |= (1 << (EP(num) + 1));
00491                     if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
00492                         epComplete &= ~(1 << (EP(num) + 1));
00493                     }
00494                 }
00495             }
00496         }
00497 
00498         USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
00499     }
00500         
00501     // sleep interrupt
00502     if (istat & 1<<4) {
00503         USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
00504     }    
00505 
00506     // error interrupt
00507     if (istat & USB_ISTAT_ERROR_MASK) {
00508         USB0->ERRSTAT = 0xFF;
00509         USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
00510     }
00511 }
00512 
00513 
00514 #endif