lab robotic coimbra

Dependencies:   ISR_Mini-explorer mbed

MiniExplorerCoimbra.cpp

Committer:
Ludwigfr
Date:
2017-06-26
Revision:
0:9f7ee7ed13e4

File content as of revision 0:9f7ee7ed13e4:

#include "MiniExplorerCoimbra.hpp"
#include "robot.h"

#define PI 3.14159

MiniExplorerCoimbra::MiniExplorerCoimbra(float defaultXWorld, float defaultYWorld, float defaultThetaWorld):map(200,200,20,20),sonarLeft(10*PI/36,-4,4),sonarFront(0,0,5),sonarRight(-10*PI/36,4,4){
    i2c1.frequency(100000);
    initRobot(); //Initializing the robot
    pc.baud(9600); // baud for the pc communication

    measure_always_on();//TODO check if needed

    this->setXYThetaAndXYThetaWorld(defaultXWorld,defaultYWorld,defaultThetaWorld);
    this->radiusWheels=3.25;
    this->distanceWheels=7.2; 
    
    this->khro=12;
    this->ka=30;
    this->kb=-13;
    this->kv=200;
    this->kh=200;

    this->rangeForce=30;
    this->attractionConstantForce=10000;
    this->repulsionConstantForce=1;
} 

void MiniExplorerCoimbra::setXYThetaAndXYThetaWorld(float defaultXWorld, float defaultYWorld, float defaultThetaWorld){
    this->xWorld=defaultXWorld;
    this->yWorld=defaultYWorld;
    this->thetaWorld=defaultThetaWorld;
    X=defaultYWorld;
    Y=-defaultXWorld;
	if(defaultThetaWorld < -PI/2)
		theta=PI/2+PI-defaultThetaWorld;
	else
		theta=defaultThetaWorld-PI/2;
}

void MiniExplorerCoimbra::myOdometria(){
	Odometria();
	this->xWorld=-Y;
	this->yWorld=X;
	if(theta >PI/2)
		this->thetaWorld=-PI+(theta-PI/2);
	else
		this->thetaWorld=theta+PI/2;
}

//generate a position randomly and makes the robot go there while updating the map
void MiniExplorerCoimbra::randomize_and_map() {
    //TODO check that it's aurelien's work
    float movementOnX=rand()%(int)(this->map.widthRealMap/2);
    float movementOnY=rand()%(int)(this->map.heightRealMap/2);
    
    float signOfX=rand()%2;
    if(signOfX < 1)
        signOfX=-1;
    float signOfY=rand()%2;
    if(signOfY  < 1)
        signOfY=-1;
        
    float targetXWorld = movementOnX*signOfX;
    float targetYWorld = movementOnY*signOfY;
    float targetAngleWorld = 2*((float)(rand()%31416)-15708)/10000.0;
    this->go_to_point_with_angle(targetXWorld, targetYWorld, targetAngleWorld);
}

//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_to_point_with_angle(float targetXWorld, float targetYWorld, float targetAngleWorld) {
    bool keepGoing=true;
    float leftMm;
    float frontMm; 
    float rightMm;
    float dt;
    Timer t;
    float distanceToTarget;
    do {
        //Timer stuff
        dt = t.read();
        t.reset();
        t.start();
        
        //Updating X,Y and theta with the odometry values
        this->myOdometria();
       	leftMm = get_distance_left_sensor();
    	frontMm = get_distance_front_sensor();
    	rightMm = get_distance_right_sensor();

        //if in dangerzone 
        if((frontMm < 150 && frontMm > 0)|| (leftMm <150 && leftMm > 0) || (rightMm <150 && rightMm > 0) ){
            leftMotor(1,0);
            rightMotor(1,0);
            this->update_sonar_values(leftMm, frontMm, rightMm);
            //TODO Giorgos maybe you can also test the do_half_flip() function
            this->myOdometria();
            //do a flip TODO
            keepGoing=false;
            this->do_half_flip();   
        }else{
            //if not in danger zone continue as usual
            this->update_sonar_values(leftMm, frontMm, rightMm);

        	//Updating motor velocities
            distanceToTarget=this->update_angular_speed_wheels_go_to_point_with_angle(targetXWorld,targetYWorld,targetAngleWorld,dt);
    
            wait(0.2);
            //Timer stuff
            t.stop();
            pc.printf("\n\r dist to target= %f",distanceToTarget);
        }
    } while(distanceToTarget>1 && (abs(targetAngleWorld-this->thetaWorld)>0.01) && keepGoing);

    //Stop at the end
    leftMotor(1,0);
    rightMotor(1,0);
}

float MiniExplorerCoimbra::update_angular_speed_wheels_go_to_point_with_angle(float targetXWorld, float targetYWorld, float targetAngleWorld, float dt){
    //compute_angles_and_distance
    //atan2 take the deplacement on x and the deplacement on y as parameters
    float angleToPoint = atan2((targetYWorld-this->yWorld),(targetXWorld-this->xWorld))-this->thetaWorld;
    angleToPoint = atan(sin(angleToPoint)/cos(angleToPoint));
    //rho is the distance to the point of arrival
    float rho = dist(targetXWorld,targetYWorld,this->xWorld,this->yWorld);
    float distanceToTarget = rho;
    //TODO check that
    float beta = targetAngleWorld-angleToPoint-this->thetaWorld;        
    
    //Computing angle error and distance towards the target value
    rho += dt*(-this->khro*cos(angleToPoint)*rho);
    float temp = angleToPoint;
    angleToPoint += dt*(this->khro*sin(angleToPoint)-this->ka*angleToPoint-this->kb*beta);
    beta += dt*(-this->khro*sin(temp));

    //Computing linear and angular velocities
    float linear;
    float angular;
    if(angleToPoint>=-1.5708 && angleToPoint<=1.5708){
        linear=this->khro*rho;
        angular=this->ka*angleToPoint+this->kb*beta;
    }
    else{
        linear=-this->khro*rho;
        angular=-this->ka*angleToPoint-this->kb*beta;
    }
    float angular_left=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
    float angular_right=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
    
    //Normalize speed for motors
    if(angular_left>angular_right) {
        angular_right=this->speed*angular_right/angular_left;
        angular_left=this->speed;
    } else {
        angular_left=this->speed*angular_left/angular_right;
        angular_right=this->speed;
    }

    //compute_linear_angular_velocities 
    leftMotor(1,angular_left);
    rightMotor(1,angular_right);
    
    return distanceToTarget;
}

void MiniExplorerCoimbra::update_sonar_values(float leftMm,float frontMm,float rightMm){
    float xWorldCell;
    float yWorldCell;
    for(int i=0;i<this->map.nbCellWidth;i++){
        for(int j=0;j<this->map.nbCellHeight;j++){
        	xWorldCell=this->map.cell_width_coordinate_to_world(i);
            yWorldCell=this->map.cell_height_coordinate_to_world(j);
        	this->map.update_cell_value(i,j,this->sonarRight.compute_probability_t(rightMm/10,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld));
        	this->map.update_cell_value(i,j,this->sonarLeft.compute_probability_t(leftMm/10,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld));
        	this->map.update_cell_value(i,j,this->sonarFront.compute_probability_t(frontMm/10,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld));

       	}
    }
}

void MiniExplorerCoimbra::do_half_flip(){
    this->myOdometria();
    float theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
    if(theta_plus_h_pi > PI)
        theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
    leftMotor(0,100);
    rightMotor(1,100);
    while(abs(theta_plus_h_pi-theta)>0.05){
        this->myOdometria();
       // pc.printf("\n\r diff=%f", abs(theta_plus_pi-theta));
    }
    leftMotor(1,0);
    rightMotor(1,0);    
}

//Distance computation function
float MiniExplorerCoimbra::dist(float x1, float y1, float x2, float y2){
    return sqrt(pow(y2-y1,2) + pow(x2-x1,2));
}

//use virtual force field
void MiniExplorerCoimbra::try_to_reach_target(float targetXWorld,float targetYWorld){
    //atan2 gives the angle beetween PI and -PI
    this->myOdometria();
    /*
    float deplacementOnXWorld=targetXWorld-this->xWorld;
    float deplacementOnYWorld=targetYWorld-this->yWorld;
    */
    float angleToTarget=atan2(targetYWorld-this->yWorld,targetXWorld-this->xWorld);
    turn_to_target(angleToTarget);
    bool reached=false;
    int print=0;
    while (!reached) {
        this->vff(&reached,targetXWorld,targetYWorld);
        //test_got_to_line(&reached);
        if(print==10){
            leftMotor(1,0);
            rightMotor(1,0);
            this->print_map_with_robot_position_and_target(targetXWorld,targetYWorld);
            print=0;
        }else
            print+=1;
    }
    //Stop at the end
    leftMotor(1,0);
    rightMotor(1,0);
    pc.printf("\r\n target reached");
    wait(3);//
}

void MiniExplorerCoimbra::vff(bool* reached, float targetXWorld, float targetYWorld){
    float line_a;
    float line_b;
    float line_c;
    //Updating X,Y and theta with the odometry values
    float forceXWorld=0;
    float forceYWorld=0;
    //we update the odometrie
    this->myOdometria();
    //we check the sensors
    float leftMm = get_distance_left_sensor();
    float frontMm = get_distance_front_sensor();
    float rightMm = get_distance_right_sensor();
    //update the probabilities values 
    this->update_sonar_values(leftMm, frontMm, rightMm);
    //we compute the force on X and Y
    this->compute_forceX_and_forceY(&forceXWorld, &forceYWorld,targetXWorld,targetYWorld);
    //we compute a new ine
    this->calculate_line(forceXWorld, forceYWorld, &line_a,&line_b,&line_c);
    //Updating motor velocities
    this->go_to_line(line_a,line_b,line_c,targetXWorld,targetYWorld);

    //wait(0.1);
    this->myOdometria();
    if(dist(this->xWorld,this->yWorld,targetXWorld,targetYWorld)<10)
        *reached=true;
}

/*angleToTarget is obtained through atan2 so it s:
< 0 if the angle is bettween PI and 2pi on a trigo circle
> 0 if it is between 0 and PI
*/
void MiniExplorerCoimbra::turn_to_target(float angleToTarget){
    this->myOdometria();
    float theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
    if(theta_plus_h_pi > PI)
        theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
     if(angleToTarget>0){   
        leftMotor(0,1);
        rightMotor(1,1);
    }else{
        leftMotor(1,1);
        rightMotor(0,1);
    }
    while(abs(angleToTarget-theta_plus_h_pi)>0.05){
        this->myOdometria();
        theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
         if(theta_plus_h_pi > PI)
            theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
        //pc.printf("\n\r diff=%f", abs(angleToTarget-theta_plus_h_pi));
    }
    leftMotor(1,0);
    rightMotor(1,0);    
}


void MiniExplorerCoimbra::print_map_with_robot_position_and_target(float targetXWorld, float targetYWorld) {
    float currProba;
    
    float heightIndiceInOrthonormal;
    float widthIndiceInOrthonormal;
    
    float widthMalus=-(3*this->map.sizeCellWidth/2);
    float widthBonus=this->map.sizeCellWidth/2;
    
    float heightMalus=-(3*this->map.sizeCellHeight/2);
    float heightBonus=this->map.sizeCellHeight/2;

    pc.printf("\n\r");
    for (int y = this->map.nbCellHeight -1; y>-1; y--) {
        for (int x= 0; x<this->map.nbCellWidth; x++) {
            heightIndiceInOrthonormal=this->map.cell_height_coordinate_to_world(y);
            widthIndiceInOrthonormal=this->map.cell_width_coordinate_to_world(x);
            if(this->yWorld >= (heightIndiceInOrthonormal+heightMalus) && this->yWorld <= (heightIndiceInOrthonormal+heightBonus) && this->xWorld >= (widthIndiceInOrthonormal+widthMalus) && this->xWorld <= (widthIndiceInOrthonormal+widthBonus))
                pc.printf(" R ");
            else{
                if(targetYWorld >= (heightIndiceInOrthonormal+heightMalus) && targetYWorld <= (heightIndiceInOrthonormal+heightBonus) && targetXWorld >= (widthIndiceInOrthonormal+widthMalus) && targetXWorld <= (widthIndiceInOrthonormal+widthBonus))                    
                    pc.printf(" T ");
                else{
                    currProba=this->map.log_to_proba(this->map.cellsLogValues[x][y]);
                    if ( currProba < 0.5)
                        pc.printf("   ");
                    else{
                        if(currProba==0.5)
                            pc.printf(" . ");
                        else
                            pc.printf(" X ");
                    } 
                }
            }
        }
        pc.printf("\n\r");
    }
}


//robotX and robotY are from this->myOdometria(), calculate line_a, line_b and line_c
void MiniExplorerCoimbra::calculate_line(float forceX, float forceY, float *line_a, float *line_b, float *line_c){
    /*
    in the teachers maths it is 
    
    *line_a=forceY;
    *line_b=-forceX;
    
    because a*x+b*y+c=0
    a impact the vertical and b the horizontal
    and he has to put them like this because
    Robot space:      World space:
      ^                 ^
      |x                |y
   <- R                 O ->
    y                     x
    but since our forceX, forceY are already computed in the orthonormal space I m not sure we need to 
    */
    *line_a=forceX;
    *line_b=forceY;
    //because the line computed always pass by the robot center we dont need lince_c
    //*line_c=forceX*this->yWorld+forceY*this->xWorld;    
    *line_c=0;
}
//compute the force on X and Y
void MiniExplorerCoimbra::compute_forceX_and_forceY(float* forceXWorld, float* forceYWorld, float targetXWorld, float targetYWorld){
	float forceRepulsionComputedX=0;
	float forceRepulsionComputedY=0;
	     for(int i=0;i<this->map.nbCellWidth;i++){	//for each cell of the map we compute a force of repulsion
        for(int j=0;j<this->map.nbCellHeight;j++){
            this->update_force(i,j,&forceRepulsionComputedX,&forceRepulsionComputedY);
        }
    }
    //update with attraction force
    *forceXWorld=+forceRepulsionComputedX;
    *forceYWorld=+forceRepulsionComputedY;
    float distanceTargetRobot=sqrt(pow(targetXWorld-this->xWorld,2)+pow(targetYWorld-this->yWorld,2));
    if(distanceTargetRobot != 0){
        *forceXWorld-=this->attractionConstantForce*(targetXWorld-this->xWorld)/distanceTargetRobot;
        *forceYWorld-=this->attractionConstantForce*(targetYWorld-this->yWorld)/distanceTargetRobot;
    }
    float amplitude=sqrt(pow(*forceXWorld,2)+pow(*forceYWorld,2));
    if(amplitude!=0){//avoid division by 0 if forceX and forceY  == 0
        *forceXWorld=*forceXWorld/amplitude;
        *forceYWorld=*forceYWorld/amplitude;
    }
}

//currently line_c is not used
void MiniExplorerCoimbra::go_to_line(float line_a, float line_b, float line_c,float targetXWorld, float targetYWorld){
    float lineAngle;
    float angleError;
    float linear;
    float angular; 
    
    //atan2 use the deplacement on X and the deplacement on Y
    float angleToTarget=atan2(targetYWorld-this->yWorld,targetXWorld-this->xWorld);
    bool aligned=false;
    
    //this condition is passed if the target is in the same direction as the robot orientation
   	if((angleToTarget>0 && this->thetaWorld > 0) || (angleToTarget<0 && this->thetaWorld <0))
    	aligned=true;
    
    //line angle is beetween pi/2 and -pi/2
    /*
    ax+by+c=0 (here c==0)
    y=x*-a/b
    if a*b > 0, the robot is going down
    if a*b <0, the robot is going up
    */	
     if(line_b!=0){
        if(!aligned)
            lineAngle=atan(-line_a/line_b);
        else
            lineAngle=atan(line_a/-line_b);
    }
    else{
        lineAngle=1.5708;
    }
    
    //Computing angle error
    angleError = lineAngle-this->thetaWorld;//TODO that I m not sure
    angleError = atan(sin(angleError)/cos(angleError));

    //Calculating velocities
    linear=this->kv*(3.1416);
    angular=this->kh*angleError;

    float angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
    float angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
    
    //Normalize speed for motors
    if(abs(angularLeft)>abs(angularRight)) {  
        angularRight=this->speed*abs(angularRight/angularLeft)*this->sign1(angularRight);
        angularLeft=this->speed*this->sign1(angularLeft);
    }
    else {
        angularLeft=this->speed*abs(angularLeft/angularRight)*this->sign1(angularLeft);
        angularRight=this->speed*this->sign1(angularRight);
    }
    leftMotor(this->sign2(angularLeft),abs(angularLeft));
    rightMotor(this->sign2(angularRight),abs(angularRight));
}

void MiniExplorerCoimbra::update_force(int widthIndice, int heightIndice, float* forceRepulsionComputedX, float* forceRepulsionComputedY ){
    //get the coordonate of the map and the robot in the ortonormal space
    float xWorldCell=this->map.cell_width_coordinate_to_world(widthIndice);
    float yWorldCell=this->map.cell_height_coordinate_to_world(heightIndice);
    //compute the distance beetween the cell and the robot
    float distanceCellToRobot=sqrt(pow(xWorldCell-this->xWorld,2)+pow(yWorldCell-this->yWorld,2));
    //check if the cell is in range
    if(distanceCellToRobot <= this->rangeForce) {
        float probaCell=this->map.get_proba_cell(widthIndice,heightIndice);
        *forceRepulsionComputedX+=this->repulsionConstantForce*probaCell*(xWorldCell-this->xWorld)/pow(distanceCellToRobot,3);
        *forceRepulsionComputedY+=this->repulsionConstantForce*probaCell*(yWorldCell-this->yWorld)/pow(distanceCellToRobot,3);
    }
}

//return 1 if positiv, -1 if negativ
float MiniExplorerCoimbra::sign1(float value){
    if(value>=0) 
        return 1;
    else 
        return -1;
}

//return 1 if positiv, 0 if negativ
int MiniExplorerCoimbra::sign2(float value){
    if(value>=0) 
        return 1;
    else 
        return 0;
}

/*
void MiniExplorerCoimbra::test_procedure_lab_4(){
    this->map.fill_map_with_initial();
    float xEstimatedK=this->xWorld;
    float yEstimatedK=this->yWorld;
    float thetaWorldEstimatedK = this->thetaWorld;
    float distanceMoved;
    float angleMoved;
    float PreviousCovarianceOdometricPositionEstimate[3][3];
    PreviousCovarianceOdometricPositionEstimate[0][0]=0;
    PreviousCovarianceOdometricPositionEstimate[0][1]=0;
    PreviousCovarianceOdometricPositionEstimate[0][2]=0;
    PreviousCovarianceOdometricPositionEstimate[1][0]=0;
    PreviousCovarianceOdometricPositionEstimate[1][1]=0;
    PreviousCovarianceOdometricPositionEstimate[1][2]=0;
    PreviousCovarianceOdometricPositionEstimate[2][0]=0;
    PreviousCovarianceOdometricPositionEstimate[2][1]=0;
    PreviousCovarianceOdometricPositionEstimate[2][2]=0;
    while(1){
        distanceMoved=50;
        angleMoved=0;
        this->go_straight_line(50);
        wait(1);
        procedure_lab_4(xEstimatedK,yEstimatedK,thetaWorldEstimatedK,distanceMoved,angleMoved,PreviousCovarianceOdometricPositionEstimate);
        pc.printf("\n\r x:%f,y:%f,theta:%f",this->xWorld,this->yWorld,this->thetaWorld);
        pc.printf("\n\r xEstim:%f,yEstim:%f,thetaEstim:%f",xEstimatedK,yEstimatedK,thetaWorldEstimatedK);
        this->turn_to_target(PI/2);
        distanceMoved=0;
        angleMoved=PI/2;
        procedure_lab_4(xEstimatedK,yEstimatedK,thetaWorldEstimatedK,distanceMoved,angleMoved,PreviousCovarianceOdometricPositionEstimate);
        pc.printf("\n\r x:%f,y:%f,theta:%f",this->xWorld,this->yWorld,this->thetaWorld);
        pc.printf("\n\r xEstim:%f,yEstim:%f,thetaEstim:%f",xEstimatedK,yEstimatedK,thetaWorldEstimatedK);
    }
}

void MiniExplorerCoimbra::go_straight_line(float distanceCm){
	leftMotor(1,1);
	rightMotor(1,1);
	float xEstimated=this->xWorld+distanceCm*cos(this->thetaWorld);
    float yEstimated=this->yWorld+distanceCm*sin(this->thetaWorld);
	while(1){
		this->myOdometria();
		if(abs(xEstimated-this->xWorld) < 0.1 && abs(yEstimated-this->yWorld) < 0.1)
			break;
	}
	leftMotor(1,0);
	rightMotor(1,0);
}

//compute predicted localisation (assume movements are either straight lines or pure rotation), update PreviousCovarianceOdometricPositionEstimate
//TODO tweak constant rewritte it good
void MiniExplorerCoimbra::procedure_lab_4(float xEstimatedK,float yEstimatedK, float thetaWorldEstimatedK, float distanceMoved, float angleMoved, float PreviousCovarianceOdometricPositionEstimate[3][3]){

    float distanceMovedByLeftWheel=distanceMoved/2;
    float distanceMovedByRightWheel=distanceMoved/2;
    if(angleMoved !=0){
        //TODO check that not sure
        distanceMovedByLeftWheel=-angleMoved/(2*this->distanceWheels);
        distanceMovedByRightWheel=angleMoved/(2*this->distanceWheels);
    }else{
        distanceMovedByLeftWheel=distanceMoved/2;
        distanceMovedByRightWheel=distanceMoved/2;
    }
        
    float xEstimatedKNext=xEstimatedK+distanceMoved*cos(angleMoved);
    float yEstimatedKNext=yEstimatedK+distanceMoved*sin(angleMoved);
    float thetaWorldEstimatedKNext=thetaWorldEstimatedK+angleMoved;
    
    float kRight=0.1;//error constant 
    float kLeft=0.1;//error constant 
    float motionIncrementCovarianceMatrix[2][2];
    motionIncrementCovarianceMatrix[0][0]=kRight*abs(distanceMovedByRightWheel);
    motionIncrementCovarianceMatrix[0][1]=0;
    motionIncrementCovarianceMatrix[1][0]=0;
    motionIncrementCovarianceMatrix[1][1]=kLeft*abs(distanceMovedByLeftWheel);
    
    float jacobianFp[3][3];
    jacobianFp[0][0]=1;
    jacobianFp[0][1]=0;
    jacobianFp[0][2]=-distanceMoved*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFp[1][0]=0;
    jacobianFp[1][1]=1;
    jacobianFp[1][2]=distanceMoved*cos(thetaWorldEstimatedK+angleMoved/2);;
    jacobianFp[2][0]=0;
    jacobianFp[2][1]=0;
    jacobianFp[2][2]=1;
    
    float jacobianFpTranspose[3][3];
    jacobianFpTranspose[0][0]=1;
    jacobianFpTranspose[0][1]=0;
    jacobianFpTranspose[0][2]=0;
    jacobianFpTranspose[1][0]=0;
    jacobianFpTranspose[1][1]=1;
    jacobianFpTranspose[1][2]=0;
    jacobianFpTranspose[2][0]=-distanceMoved*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFpTranspose[2][1]=distanceMoved*cos(thetaWorldEstimatedK+angleMoved/2);
    jacobianFpTranspose[2][2]=1;
    
    float jacobianFDeltarl[3][2];
    jacobianFDeltarl[0][0]=(1/2)*cos(thetaWorldEstimatedK+angleMoved/2)-(distanceMoved/(2*this->distanceWheels))*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarl[0][1]=(1/2)*cos(thetaWorldEstimatedK+angleMoved/2)+(distanceMoved/(2*this->distanceWheels))*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarl[1][0]=(1/2)*sin(thetaWorldEstimatedK+angleMoved/2)+(distanceMoved/(2*this->distanceWheels))*cos(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarl[1][1]=(1/2)*sin(thetaWorldEstimatedK+angleMoved/2)-(distanceMoved/(2*this->distanceWheels))*cos(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarl[2][0]=1/this->distanceWheels;
    jacobianFDeltarl[2][1]=-1/this->distanceWheels;
    
    float jacobianFDeltarlTranspose[2][3];//1,3,5;2,4,6
    jacobianFDeltarlTranspose[0][0]=(1/2)*cos(thetaWorldEstimatedK+angleMoved/2)-(distanceMoved/(2*this->distanceWheels))*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarlTranspose[0][1]=(1/2)*sin(thetaWorldEstimatedK+angleMoved/2)+(distanceMoved/(2*this->distanceWheels))*cos(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarlTranspose[0][2]=1/this->distanceWheels;
    jacobianFDeltarlTranspose[1][0]=(1/2)*cos(thetaWorldEstimatedK+angleMoved/2)+(distanceMoved/(2*this->distanceWheels))*sin(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarlTranspose[1][1]=(1/2)*sin(thetaWorldEstimatedK+angleMoved/2)-(distanceMoved/(2*this->distanceWheels))*cos(thetaWorldEstimatedK+angleMoved/2);
    jacobianFDeltarlTranspose[1][2]=-1/this->distanceWheels;
    
    float tempMatrix3_3[3][3];
    int i;
    int j;
    int k;
    for( i = 0; i < 3; ++i){//mult 3*3, 3*3
        for(j = 0; j < 3; ++j){
            for(k = 0; k < 3; ++k){
                tempMatrix3_3[i][j] += jacobianFp[i][k] * PreviousCovarianceOdometricPositionEstimate[k][j];
            }
        }
    }
    float sndTempMatrix3_3[3][3];
    for(i = 0; i < 3; ++i){//mult 3*3, 3*3
        for(j = 0; j < 3; ++j){
            for(k = 0; k < 3; ++k){
                sndTempMatrix3_3[i][j] += tempMatrix3_3[i][k] * jacobianFpTranspose[k][j];
            }
        }
    }
    float tempMatrix3_2[3][2];
    for(i = 0; i < 3; ++i){//mult 3*2 , 2,2
        for(j = 0; j < 2; ++j){
            for(k = 0; k < 2; ++k){
                tempMatrix3_2[i][j] += jacobianFDeltarl[i][k] * motionIncrementCovarianceMatrix[k][j];
            }
        }
    }
    float thrdTempMatrix3_3[3][3];
    for(i = 0; i < 3; ++i){//mult 3*2 , 2,3
        for(j = 0; j < 3; ++j){
            for(k = 0; k < 2; ++k){
                thrdTempMatrix3_3[i][j] += tempMatrix3_2[i][k] * jacobianFDeltarlTranspose[k][j];
            }
        }
    }
    float newCovarianceOdometricPositionEstimate[3][3];
    for(i = 0; i < 3; ++i){//add 3*3 , 3*3
        for(j = 0; j < 3; ++j){
            newCovarianceOdometricPositionEstimate[i][j]=sndTempMatrix3_3[i][j]+thrdTempMatrix3_3[i][j];
        }
    }
    
    //check measurements from sonars, see if they passed the validation gate
    float leftCm = get_distance_left_sensor()/10;
    float frontCm = get_distance_front_sensor()/10;
    float rightCm = get_distance_right_sensor()/10;
    //if superior to sonar range, put the value to sonar max range + 1
    if(leftCm > this->sonarLeft.maxRange)
        leftCm=this->sonarLeft.maxRange;
    if(frontCm > this->sonarFront.maxRange)
        frontCm=this->sonarFront.maxRange;
    if(rightCm > this->sonarRight.maxRange)
        rightCm=this->sonarRight.maxRange;
    //get the estimated measure we should have according to our knowledge of the map and the previously computed localisation
    float leftCmEstimated=this->sonarLeft.maxRange;
    float frontCmEstimated=this->sonarFront.maxRange;
    float rightCmEstimated=this->sonarRight.maxRange;
    float xWorldCell;
    float yWorldCell;
    float currDistance;
    float xClosestCellLeft;
    float yClosestCellLeft;
    float xClosestCellFront;
    float yClosestCellFront;
    float xClosestCellRight;
    float yClosestCellRight;
    for(int i=0;i<this->map.nbCellWidth;i++){
        for(int j=0;j<this->map.nbCellHeight;j++){
            //check if occupied, if not discard
            if(this->map.get_proba_cell(i,j)==1){
                //check if in sonar range
                xWorldCell=this->map.cell_width_coordinate_to_world(i);
                yWorldCell=this->map.cell_height_coordinate_to_world(j);
                //check left
                currDistance=this->sonarLeft.isInRange(xWorldCell,yWorldCell,xEstimatedKNext,yEstimatedKNext,thetaWorldEstimatedKNext);           
                if((currDistance < this->sonarLeft.maxRange) && currDistance!=-1){
                    //check if distance is lower than previous, update lowest if so
                    if(currDistance < leftCmEstimated){
                        leftCmEstimated= currDistance;
                        xClosestCellLeft=xWorldCell;
                        yClosestCellLeft=yWorldCell;
                    }
            	}
                //check front
                currDistance=this->sonarFront.isInRange(xWorldCell,yWorldCell,xEstimatedKNext,yEstimatedKNext,thetaWorldEstimatedKNext);           
                if((currDistance < this->sonarFront.maxRange) && currDistance!=-1){
                    //check if distance is lower than previous, update lowest if so
                    if(currDistance < frontCmEstimated){
                        frontCmEstimated= currDistance;
                        xClosestCellFront=xWorldCell;
                        yClosestCellFront=yWorldCell;
                    }
                }
                //check right
                currDistance=this->sonarRight.isInRange(xWorldCell,yWorldCell,xEstimatedKNext,yEstimatedKNext,thetaWorldEstimatedKNext);              
                if((currDistance < this->sonarRight.maxRange) && currDistance!=-1){
                    //check if distance is lower than previous, update lowest if so
                    if(currDistance < rightCmEstimated){
                        rightCmEstimated= currDistance;
                        xClosestCellRight=xWorldCell;
                        yClosestCellRight=yWorldCell;
                    }
                }
            }
        }
    }
    //get the innoncation: the value of the difference between the actual measure and what we anticipated
    float innovationLeft=leftCm-leftCmEstimated;
    float innovationFront=frontCm-frontCmEstimated;
    float innovationRight=-rightCm-rightCmEstimated;
    //compute jacobian of observation
    float jacobianOfObservationLeft[3];
    float jacobianOfObservationRight[3];
    float jacobianOfObservationFront[3];
    float xSonarLeft=xEstimatedKNext+this->sonarLeft.distanceX;
    float ySonarLeft=yEstimatedKNext+this->sonarLeft.distanceY;
    //left
    jacobianOfObservationLeft[0]=(xSonarLeft-xClosestCellLeft)/leftCmEstimated;
    jacobianOfObservationLeft[1]=(ySonarLeft-yClosestCellLeft)/leftCmEstimated;
    jacobianOfObservationLeft[2]=(xClosestCellLeft-xSonarLeft)*(xSonarLeft*sin(thetaWorldEstimatedKNext)+ySonarLeft*cos(thetaWorldEstimatedKNext))+(yClosestCellLeft-ySonarLeft)*(-xSonarLeft*cos(thetaWorldEstimatedKNext)+ySonarLeft*sin(thetaWorldEstimatedKNext));
    //front
    float xSonarFront=xEstimatedKNext+this->sonarFront.distanceX;
    float ySonarFront=yEstimatedKNext+this->sonarFront.distanceY;
    jacobianOfObservationFront[0]=(xSonarFront-xClosestCellFront)/frontCmEstimated;
    jacobianOfObservationFront[1]=(ySonarFront-yClosestCellFront)/frontCmEstimated;
    jacobianOfObservationFront[2]=(xClosestCellFront-xSonarFront)*(xSonarFront*sin(thetaWorldEstimatedKNext)+ySonarFront*cos(thetaWorldEstimatedKNext))+(yClosestCellFront-ySonarFront)*(-xSonarFront*cos(thetaWorldEstimatedKNext)+ySonarFront*sin(thetaWorldEstimatedKNext));
    //right
    float xSonarRight=xEstimatedKNext+this->sonarRight.distanceX;
    float ySonarRight=yEstimatedKNext+this->sonarRight.distanceY;
    jacobianOfObservationRight[0]=(xSonarRight-xClosestCellRight)/rightCmEstimated;
    jacobianOfObservationRight[1]=(ySonarRight-yClosestCellRight)/rightCmEstimated;
    jacobianOfObservationRight[2]=(xClosestCellRight-xSonarRight)*(xSonarRight*sin(thetaWorldEstimatedKNext)+ySonarRight*cos(thetaWorldEstimatedKNext))+(yClosestCellRight-ySonarRight)*(-xSonarRight*cos(thetaWorldEstimatedKNext)+ySonarRight*sin(thetaWorldEstimatedKNext));

    //left
    float TempMatrix3_3InnovationLeft[3];
    TempMatrix3_3InnovationLeft[0]=jacobianOfObservationLeft[0]*newCovarianceOdometricPositionEstimate[0][0]+jacobianOfObservationLeft[1]*newCovarianceOdometricPositionEstimate[1][0]+jacobianOfObservationLeft[2]*newCovarianceOdometricPositionEstimate[2][0];
    TempMatrix3_3InnovationLeft[1]=jacobianOfObservationLeft[0]*newCovarianceOdometricPositionEstimate[0][1]+jacobianOfObservationLeft[1]*newCovarianceOdometricPositionEstimate[1][1]+jacobianOfObservationLeft[2]*newCovarianceOdometricPositionEstimate[2][1];
    TempMatrix3_3InnovationLeft[2]=jacobianOfObservationLeft[0]*newCovarianceOdometricPositionEstimate[0][2]+jacobianOfObservationLeft[1]*newCovarianceOdometricPositionEstimate[1][2]+jacobianOfObservationLeft[2]*newCovarianceOdometricPositionEstimate[2][2];
    float innovationConvarianceLeft=TempMatrix3_3InnovationLeft[0]*jacobianOfObservationLeft[0]+TempMatrix3_3InnovationLeft[1]*jacobianOfObservationLeft[1]+TempMatrix3_3InnovationLeft[2]*jacobianOfObservationLeft[2];
    //front
    float TempMatrix3_3InnovationFront[3];
    TempMatrix3_3InnovationFront[0]=jacobianOfObservationFront[0]*newCovarianceOdometricPositionEstimate[0][0]+jacobianOfObservationFront[1]*newCovarianceOdometricPositionEstimate[1][0]+jacobianOfObservationFront[2]*newCovarianceOdometricPositionEstimate[2][0];
    TempMatrix3_3InnovationFront[1]=jacobianOfObservationFront[0]*newCovarianceOdometricPositionEstimate[0][1]+jacobianOfObservationFront[1]*newCovarianceOdometricPositionEstimate[1][1]+jacobianOfObservationFront[2]*newCovarianceOdometricPositionEstimate[2][1];
    TempMatrix3_3InnovationFront[2]=jacobianOfObservationFront[0]*newCovarianceOdometricPositionEstimate[0][2]+jacobianOfObservationFront[1]*newCovarianceOdometricPositionEstimate[1][2]+jacobianOfObservationFront[2]*newCovarianceOdometricPositionEstimate[2][2];
    float innovationConvarianceFront=TempMatrix3_3InnovationFront[0]*jacobianOfObservationFront[0]+TempMatrix3_3InnovationFront[1]*jacobianOfObservationFront[1]+TempMatrix3_3InnovationFront[2]*jacobianOfObservationFront[2];
    //right
    float TempMatrix3_3InnovationRight[3];
    TempMatrix3_3InnovationRight[0]=jacobianOfObservationRight[0]*newCovarianceOdometricPositionEstimate[0][0]+jacobianOfObservationRight[1]*newCovarianceOdometricPositionEstimate[1][0]+jacobianOfObservationRight[2]*newCovarianceOdometricPositionEstimate[2][0];
    TempMatrix3_3InnovationRight[1]=jacobianOfObservationRight[0]*newCovarianceOdometricPositionEstimate[0][1]+jacobianOfObservationRight[1]*newCovarianceOdometricPositionEstimate[1][1]+jacobianOfObservationRight[2]*newCovarianceOdometricPositionEstimate[2][1];
    TempMatrix3_3InnovationRight[2]=jacobianOfObservationRight[0]*newCovarianceOdometricPositionEstimate[0][2]+jacobianOfObservationRight[1]*newCovarianceOdometricPositionEstimate[1][2]+jacobianOfObservationRight[2]*newCovarianceOdometricPositionEstimate[2][2];
    float innovationConvarianceRight=TempMatrix3_3InnovationRight[0]*jacobianOfObservationRight[0]+TempMatrix3_3InnovationRight[1]*jacobianOfObservationRight[1]+TempMatrix3_3InnovationRight[2]*jacobianOfObservationRight[2];
    
    //check if it pass the validation gate 
    float gateScoreLeft=innovationLeft*innovationLeft/innovationConvarianceLeft;
    float gateScoreFront=innovationFront*innovationFront/innovationConvarianceFront;
    float gateScoreRight=innovationRight*innovationRight/innovationConvarianceRight;
    int leftPassed=0;
    int frontPassed=0;
    int rightPassed=0;
    int e=10;//constant 
    if(gateScoreLeft < e)
        leftPassed=1;
    if(gateScoreFront < e)
        frontPassed=10;
    if(gateScoreRight < e)
        rightPassed=100;
    //for those who passed
    //compute composite innovation
    float compositeInnovation[3];
    int nbPassed=leftPassed+frontPassed+rightPassed;
    switch(nbPassed){
        case 0://none
            compositeInnovation[0]=0;
            compositeInnovation[1]=0;
            compositeInnovation[2]=0;
            break;
        case 1://left
            compositeInnovation[0]=innovationLeft;
            compositeInnovation[1]=0;
            compositeInnovation[2]=0;
            break;
        case 10://front
            compositeInnovation[0]=0;
            compositeInnovation[1]=innovationFront;
            compositeInnovation[2]=0;
            break;
        case 11://left and front
            compositeInnovation[0]=innovationLeft;
            compositeInnovation[1]=innovationFront;
            compositeInnovation[2]=0;
            break;
        case 100://right
            compositeInnovation[0]=0;
            compositeInnovation[1]=0;
            compositeInnovation[2]=innovationRight;
            break;
        case 101://right and left
            compositeInnovation[0]=innovationLeft;
            compositeInnovation[1]=0;
            compositeInnovation[2]=innovationRight;
            break;
        case 110://right and front
            compositeInnovation[0]=0;
            compositeInnovation[1]=innovationFront;
            compositeInnovation[2]=innovationRight;
            break;
        case 111://right front and left
            compositeInnovation[0]=innovationLeft;
            compositeInnovation[1]=innovationFront;
            compositeInnovation[2]=innovationRight;
            break;
    }
    //compute composite measurement Jacobian
    float *compositeMeasurementJacobian;
    switch(nbPassed){
        case 0://none
            break;
        case 1://left
            //compositeMeasurementJacobian = jacobianOfObservationLeft
            break;
        case 10://front
            //compositeMeasurementJacobian = jacobianOfObservationFront
            break;
        case 11://left and front
            compositeMeasurementJacobian=new float[6];
            compositeMeasurementJacobian[0]= jacobianOfObservationLeft[0];
            compositeMeasurementJacobian[1]= jacobianOfObservationLeft[1];
            compositeMeasurementJacobian[2]= jacobianOfObservationLeft[2];
            compositeMeasurementJacobian[3]= jacobianOfObservationFront[0];
            compositeMeasurementJacobian[4]= jacobianOfObservationFront[1];
            compositeMeasurementJacobian[5]= jacobianOfObservationFront[2];
            break;
        case 100://right
            //compositeMeasurementJacobian = jacobianOfObservationRight
            break;
        case 101://right and left
            compositeMeasurementJacobian=new float[6];
            compositeMeasurementJacobian[0]= jacobianOfObservationLeft[0];
            compositeMeasurementJacobian[1]= jacobianOfObservationLeft[1];
            compositeMeasurementJacobian[2]= jacobianOfObservationLeft[2];
            compositeMeasurementJacobian[3]= jacobianOfObservationRight[0];
            compositeMeasurementJacobian[4]= jacobianOfObservationRight[1];
            compositeMeasurementJacobian[5]= jacobianOfObservationRight[2];
    
            break;
        case 110://right and front
            compositeMeasurementJacobian=new float[6];
            compositeMeasurementJacobian[0]= jacobianOfObservationFront[0];
            compositeMeasurementJacobian[1]= jacobianOfObservationFront[1];
            compositeMeasurementJacobian[2]= jacobianOfObservationFront[2];
            compositeMeasurementJacobian[3]= jacobianOfObservationRight[0];
            compositeMeasurementJacobian[4]= jacobianOfObservationRight[1];
            compositeMeasurementJacobian[5]= jacobianOfObservationRight[2];
    
            break;
        case 111://right front and left
            compositeMeasurementJacobian=new float[9];
            compositeMeasurementJacobian[0]= jacobianOfObservationLeft[0];
            compositeMeasurementJacobian[1]= jacobianOfObservationLeft[1];
            compositeMeasurementJacobian[2]= jacobianOfObservationLeft[2];
            compositeMeasurementJacobian[3]= jacobianOfObservationFront[0];
            compositeMeasurementJacobian[4]= jacobianOfObservationFront[1];
            compositeMeasurementJacobian[5]= jacobianOfObservationFront[2];
            compositeMeasurementJacobian[6]= jacobianOfObservationRight[0];
            compositeMeasurementJacobian[7]= jacobianOfObservationRight[1];
            compositeMeasurementJacobian[8]= jacobianOfObservationRight[2];
            break;
    }
    //compute composite innovation covariance TODO dont have time, I assume you can just multiply them, can also simply all this easily
    float compositeInnovationCovariance;
    switch(nbPassed){
        case 0://none
            compositeInnovationCovariance=1;
            break;
        case 1://left
            compositeInnovationCovariance = innovationConvarianceLeft;
            
            break;
        case 10://front
            compositeInnovationCovariance = innovationConvarianceFront;
            break;
        case 11://left and front
            compositeInnovationCovariance=innovationConvarianceLeft*innovationConvarianceFront;
    
            break;
        case 100://right
            compositeInnovationCovariance = innovationConvarianceRight;
            break;
        case 101://right and left
            compositeInnovationCovariance=innovationConvarianceLeft*innovationConvarianceRight;
            break;
        case 110://right and front
            compositeInnovationCovariance=innovationConvarianceFront*innovationConvarianceRight;
    
    
            break;
        case 111://right front and left
            compositeInnovationCovariance=innovationConvarianceLeft*innovationConvarianceFront*innovationConvarianceRight;
      
            break;
    }
    
    //compute kalman gain
    float kalmanGain[3][3];
    switch(nbPassed){
        //mult nbSonarPassed*3 , 3*3
        case 0://none
            break;
        case 1://left
            
            for(i = 0; i < 3; ++i){//mult 3*3, 3*1
                for(j = 0; j < 1; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k];
                    }
                }
            }
            
            break;
        case 10://front
            for(i = 0; i < 3; ++i){//mult 3*3, 3*1
                for(j = 0; j < 1; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k];
                    }
                }
            }
            break;
        case 11://left and front
            for(i = 0; i < 3; ++i){//mult 3*3, 3*2
                for(j = 0; j < 2; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k+j*3];
                    }
                }
            }
    
            break;
        case 100://right
            for(i = 0; i < 3; ++i){//mult 3*3, 3*1
                for(j = 0; j < 1; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k];
                    }
                }
            }
            break;
        case 101://right and left
            for(i = 0; i < 3; ++i){//mult 3*3, 3*2
                for(j = 0; j < 2; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k+j*3];
                    }
                }
            }
    
            break;
        case 110://right and front
            for(i = 0; i < 3; ++i){//mult 3*3, 3*2
                for(j = 0; j < 2; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k+j*3];
                    }
                }
            }
    
    
            break;
        case 111://right front and left
            for(i = 0; i < 3; ++i){//mult 3*3, 3*3
                for(j = 0; j < 3; ++j){
                    for(k = 0; k < 3; ++k){
                        kalmanGain[i][j] += newCovarianceOdometricPositionEstimate[i][k] * compositeInnovationCovariance[k+j*3];
                    }
                }
            }
      
            break;
    }
    
    for(i = 0; i < 3; ++i){//mult 3*3, 3*3
        for(j = 0; j < 3; ++j){
            kalmanGain[i][j] = kalmanGain[i][j]/compositeInnovationCovariance;
        }
    }
    //compute kalman gain * composite innovation
    //mult 3*3 , 3*1
    float result3_1[3];
    for(i = 0; i < 3; ++i){//mult 3*3, 3*1
        for(k = 0; k < 3; ++k){
            result3_1[i] += kalmanGain[i][k] * compositeInnovation[k];
        }
    }
    //compute updated robot position estimate
    float xEstimatedKLast=xEstimatedKNext+result3_1[0];
    float yEstimatedKLast=yEstimatedKNext+result3_1[1];
    float thetaWorldEstimatedKLast=thetaWorldEstimatedKNext+result3_1[2];
    //store the resultant covariance for next estimation

    float kalmanGainTranspose[3][3];
    kalmanGainTranspose[0][0]=kalmanGain[0][0];
    kalmanGainTranspose[0][1]=kalmanGain[1][0];
    kalmanGainTranspose[0][2]=kalmanGain[2][0];
    kalmanGainTranspose[1][0]=kalmanGain[0][1];
    kalmanGainTranspose[1][1]=kalmanGain[1][1];
    kalmanGainTranspose[1][2]=kalmanGain[2][1];
    kalmanGainTranspose[2][0]=kalmanGain[0][2];
    kalmanGainTranspose[2][1]=kalmanGain[1][2];
    kalmanGainTranspose[2][2]=kalmanGain[2][2];
    
    //mult 3*3 , 3*3
    float fithTempMatrix3_3[3][3];
    for(i = 0; i < 3; ++i){//mult 3*3 , 3*3
        for(j = 0; j < 3; ++j){
            for(k = 0; k < 3; ++k){
                fithTempMatrix3_3[i][j] += kalmanGain[i][k] * kalmanGainTranspose[k][j];
            }
        }
    }
    for(i = 0; i < 3; ++i){//add 3*3 , 3*3
        for(j = 0; j < 3; ++j){
            fithTempMatrix3_3[i][j]=fithTempMatrix3_3[i][j]*compositeInnovationCovariance;
        }
    }
    float covariancePositionEsimatedLast[3][3];
    for(i = 0; i < 3; ++i){//add 3*3 , 3*3
        for(j = 0; j < 3; ++j){
            covariancePositionEsimatedLast[i][j]=fithTempMatrix3_3[i][j]+newCovarianceOdometricPositionEstimate[i][j];
        }
    }
    //update PreviousCovarianceOdometricPositionEstimate
    for(i = 0; i < 3; ++i){
        for(j = 0; j < 3; ++j){
            PreviousCovarianceOdometricPositionEstimate[i][j]=covariancePositionEsimatedLast[i][j];
        }
    }
    
    xEstimatedK=xEstimatedKLast;
    yEstimatedK=yEstimatedKLast;
    thetaWorldEstimatedK=thetaWorldEstimatedKLast;
}
*/