Electric Locomotive control system. Touch screen driver control, includes regenerative braking, drives 4 brushless motors, displays speed MPH, system volts and power

Dependencies:   BSP_DISCO_F746NG FastPWM LCD_DISCO_F746NG SD_DISCO_F746NG TS_DISCO_F746NG mbed

sd_card.cpp

Committer:
JonFreeman
Date:
2017-11-13
Revision:
1:8ef34deb5177

File content as of revision 1:8ef34deb5177:

#include "mbed.h"
#include "Electric_Loco.h"
#include "SD_DISCO_F746NG.h"
/*
SD card used only to keep log of total distance travelled.
Odometer is trivial.
This file treats SD card as random access memory.
A better implementation would use library functions for FAT file system etc.

May revisit this.

*/
SD_DISCO_F746NG     sd;
extern  Serial pc;
extern  uint32_t    historic_distance;
extern  uint32_t    get_pulse_total ()  ;

static  const   int
    SD_BLOCKSIZE        = 512;   /* SD card data Block Size in Bytes      */
//  Assume SD card size is 4Gbyte, might be 8 Gbyte
//  Then can use 8388608 blocks (8 * 1024 * 1024)

uint64_t    SD_blockptr = 0;
uint32_t    SDBuffer[(SD_BLOCKSIZE >> 2)];   //  = space for (512 / 4) uint32_t
uint8_t     SD_state = SD_OK,   sd_jf = 0;

static  const    uint64_t    GIGAB = 1024 * 1024 * 1024;
//static  const    uint64_t    SDBLOCKS = (GIGAB / SD_BLOCKSIZE) * 4;    //  software drives SD up to 4Gbyte only - 8 M block
static  const    uint64_t    SDBLOCKS = (GIGAB / SD_BLOCKSIZE) * 2;    //  software drives SD up to 4Gbyte only - 8 M block
//  If data logger takes 2 minutes to fill 1 block, a 4G card takes 32 years run-time to fill
//  If system generates approx 320 pulses per metre travelled, max distance recordable in uint32_t is 65536 * 65536 / 320 = 13421.772 km
bool    sd_error    ()  {   //  Test and Clear error code sd_jf, return true if any error bits set, false on 0
    bool    retval = false;
    if  (sd_jf != 0)    {
        retval = true;
        sd_jf = 0;
    }
    return  retval;
}

bool    check_SD_block_clear    (uint32_t block) {
    uint32_t    b[(SD_BLOCKSIZE >> 2)];
    SD_state    = sd.ReadBlocks(b, (uint64_t)(SD_BLOCKSIZE * block), SD_BLOCKSIZE, 1);
    if(SD_state != SD_OK)   {
        sd_jf = 1;
        pc.printf   ("Failed, not SD_OK, erasing block %d\r\n", block);
        return  false;
    }
    for (int i = 0; i < (SD_BLOCKSIZE >> 2); i++)
        if  (b[i] != 0)
            return  false;
    return  true;
}

bool    read_SD_state   ()  {
    if  (SD_state == SD_OK)
        return  true;
    return  false;
}
/*bool erase_block (uint32_t    block2erase)    {
    uint64_t addr = SD_BLOCKSIZE * (uint64_t)block2erase;
    SD_state = sd.Erase(addr, addr + SD_BLOCKSIZE);
    if  (SD_state != SD_OK) {
        sd_jf = 1;  //  Assert error flag
        pc.printf   ("Failed, not SD_OK, erasing block %d\r\n", block2erase);
        return  false;
    }
    return  check_SD_block_clear (block2erase);
}*/

bool    SD_find_next_clear_block    (uint64_t * blok)  {   //  Successive approximation algorithm to quickly find next vacant SD card 512 byte block
    uint64_t toaddsub = SDBLOCKS / 2, stab = SDBLOCKS - 1;
    pc.printf   ("At SD_find_next_clear_block \r\n");
    while   (toaddsub)  {
        pc.printf   ("stab = %lld, toadsub = %lld\r\n", stab, toaddsub);    //  lld for long long int
        bool    clear_block = true;
        SD_state    = sd.ReadBlocks(SDBuffer, SD_BLOCKSIZE * stab, SD_BLOCKSIZE, 1);
        if(SD_state != SD_OK)   {
            sd_jf = 1;
            pc.printf   ("SD error in SD_find_next_clear_block, returning -1\r\n");
            return false;
        }
        for (int i = 0; i < (SD_BLOCKSIZE >> 2); i++)   {
            if  (SDBuffer[i] != 0) {
                clear_block = false;
                pc.printf   ("Buff at %d contains %x\r\n", i, SDBuffer[i]);
                i = SD_BLOCKSIZE;  //  to exit loop
            }
        }
        if  (clear_block)
            stab -= toaddsub;
        else
            stab += toaddsub;
        toaddsub >>= 1;
    }
    if  (!check_SD_block_clear(stab))
        stab++;
    if  (sd_error())    {   //  sd_error() tests and clears error bits
        pc.printf   ("check_SD_block_clear(%ld)returned ERROR in SD_find_next_clear_block\r\n", stab);
        sd_jf = 1;  //  reassert error flag
        return  false;
    }
    pc.printf   ("Completed find_next, stab = %d\r\n", stab);
    *blok = stab;   //  block number of next free block
    return  true;
}

bool SD_card_erase_all   (void)  {   //  assumes sd card is 4 Gbyte, erases 4 Gbyte. Called from CLI
    uint64_t    EndAddr  = GIGAB * 4, 
                StartAddr = 0LL;
    sd_jf = 0;
    pc.printf   ("Erasing SD card ... ");
    //  uint8_t Erase(uint64_t StartAddr, uint64_t EndAddr);
    SD_state    = sd.Erase(StartAddr, EndAddr);
    if  (SD_state != SD_OK) {
        pc.printf   ("SD_card_erase_all FAILED\r\n");
        sd_jf = 1;
        return  false;
    }
    pc.printf   ("no error detected\r\n");
    return  true;
}


bool mainSDtest()
{
    SD_state = sd.Init();
    if(SD_state != SD_OK) {
        pc.printf   ("sd.Init set SD_state to %0x\r\n", SD_state);
        if(SD_state == MSD_ERROR_SD_NOT_PRESENT) {
            pc.printf("SD shall be inserted before running test\r\n");
        } else {
            pc.printf("SD Initialization : FAIL.\r\n");
        }
        pc.printf("SD Test Aborted.\r\n");
        return  false;
    } 
//    else {    //  SD_state is SD_OK
    pc.printf("SD Initialization : OK.\r\n");



//        SD_card_erase_all();
//        if    (sd_error())
//            pc.printf ("SD_card_erase_all() reports ERROR");



    SD_find_next_clear_block(& SD_blockptr);
    pc.printf   ("SD_find_next_clear_block returned %lld\r\n\n\n", SD_blockptr);
    if  (sd_error())    {
        pc.printf   ("***** ERROR returned from SD_find_next_clear_block ***** SD ops aborted\r\n");
        return  false;
    }   
    pc.printf("SD_find_next_clear_block() returned %ld\r\n", SD_blockptr);
    if  (SD_blockptr < 1)   {
        pc.printf   ("Looks like card newly erased, SD_blockptr value of %d\r\n", SD_blockptr);
        SD_blockptr = 0;
        historic_distance = 0;
    }
    else    {
        SD_state = sd.ReadBlocks(SDBuffer, SD_BLOCKSIZE * (SD_blockptr - 1), SD_BLOCKSIZE, 1);
        if  (SD_state != SD_OK) {
            pc.printf   ("Error reading last block from SD block %d\r\n", SD_blockptr - 1);
            return  false;
        }
        for (int i = 0; i < (SD_BLOCKSIZE >> 2); i++)
            pc.printf   ("%lx\t", SDBuffer[i]);
        historic_distance = SDBuffer[(SD_BLOCKSIZE >> 2) - 1];
        pc.printf   ("\r\nAbove, data read from last filled SD block %lld, using historic_distance = %lx\r\n", SD_blockptr - 1, historic_distance);
    }
    if  (SD_blockptr > 2)   {
        for (int i = SD_blockptr - 2; i < SD_blockptr + 2; i++)    {
            pc.printf   ("check_SD_block_clear (%d) ", i);
            if  (check_SD_block_clear(i))
                pc.printf   ("block %ld is CLEAR\r\n", i);
            else
                pc.printf   ("block %ld is NOT clear\r\n", i);
            if  (sd_error())    {
                pc.printf   ("ERROR from check_SD_block_clear ()\r\n");
            }
        }
    }
    return  true;
}

void    update_SD_card  ()  {   //  Hall pulse total updated once per sec and saved in blocks of 128 to SD card
    static int index = 0;
    static uint32_t    buff[(SD_BLOCKSIZE >> 2) + 2];
//    buff[index++] = speed.pulse_total();        //  pulse_total for all time, add this to buffer to write to SD
    buff[index++] = get_pulse_total();        //  pulse_total for all time, add this to buffer to write to SD
    if  (index >= (SD_BLOCKSIZE >> 2)) {
        pc.printf   ("Writing new SD block %d ... ", SD_blockptr);
        SD_state = sd.WriteBlocks(buff, SD_BLOCKSIZE * SD_blockptr, SD_BLOCKSIZE, 1);
        SD_blockptr++;
        if  (SD_state == SD_OK)
            pc.printf   ("OK, distance %d\r\n", buff[index - 1] / (int)PULSES_PER_METRE);
        else
            pc.printf   ("ERROR\r\n");
        index = 0;
    }
}