projet 5A ensil Johan Bouthayna Annas

Dependencies:   mbed

Committer:
JohanBeverini
Date:
Thu Jan 18 13:50:34 2018 +0000
Revision:
2:f89067092cef
Parent:
0:1d41bd249237
version apres noel

Who changed what in which revision?

UserRevisionLine numberNew contents of line
JohanBeverini 0:1d41bd249237 1 #ifndef MPU6050_H
JohanBeverini 0:1d41bd249237 2 #define MPU6050_H
JohanBeverini 0:1d41bd249237 3
JohanBeverini 0:1d41bd249237 4 #include "mbed.h"
JohanBeverini 0:1d41bd249237 5 #include "math.h"
JohanBeverini 0:1d41bd249237 6
JohanBeverini 0:1d41bd249237 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
JohanBeverini 0:1d41bd249237 8 // Invensense Inc., www.invensense.com
JohanBeverini 0:1d41bd249237 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
JohanBeverini 0:1d41bd249237 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
JohanBeverini 0:1d41bd249237 11 //
JohanBeverini 0:1d41bd249237 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
JohanBeverini 0:1d41bd249237 13 #define YGOFFS_TC 0x01
JohanBeverini 0:1d41bd249237 14 #define ZGOFFS_TC 0x02
JohanBeverini 0:1d41bd249237 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
JohanBeverini 0:1d41bd249237 16 #define Y_FINE_GAIN 0x04
JohanBeverini 0:1d41bd249237 17 #define Z_FINE_GAIN 0x05
JohanBeverini 0:1d41bd249237 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
JohanBeverini 0:1d41bd249237 19 #define XA_OFFSET_L_TC 0x07
JohanBeverini 0:1d41bd249237 20 #define YA_OFFSET_H 0x08
JohanBeverini 0:1d41bd249237 21 #define YA_OFFSET_L_TC 0x09
JohanBeverini 0:1d41bd249237 22 #define ZA_OFFSET_H 0x0A
JohanBeverini 0:1d41bd249237 23 #define ZA_OFFSET_L_TC 0x0B
JohanBeverini 0:1d41bd249237 24 #define SELF_TEST_X 0x0D
JohanBeverini 0:1d41bd249237 25 #define SELF_TEST_Y 0x0E
JohanBeverini 0:1d41bd249237 26 #define SELF_TEST_Z 0x0F
JohanBeverini 0:1d41bd249237 27 #define SELF_TEST_A 0x10
JohanBeverini 0:1d41bd249237 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
JohanBeverini 0:1d41bd249237 29 #define XG_OFFS_USRL 0x14
JohanBeverini 0:1d41bd249237 30 #define YG_OFFS_USRH 0x15
JohanBeverini 0:1d41bd249237 31 #define YG_OFFS_USRL 0x16
JohanBeverini 0:1d41bd249237 32 #define ZG_OFFS_USRH 0x17
JohanBeverini 0:1d41bd249237 33 #define ZG_OFFS_USRL 0x18
JohanBeverini 0:1d41bd249237 34 #define SMPLRT_DIV 0x19
JohanBeverini 0:1d41bd249237 35 #define CONFIG 0x1A
JohanBeverini 0:1d41bd249237 36 #define GYRO_CONFIG 0x1B
JohanBeverini 0:1d41bd249237 37 #define ACCEL_CONFIG 0x1C
JohanBeverini 0:1d41bd249237 38 #define FF_THR 0x1D // Free-fall
JohanBeverini 0:1d41bd249237 39 #define FF_DUR 0x1E // Free-fall
JohanBeverini 0:1d41bd249237 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
JohanBeverini 0:1d41bd249237 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
JohanBeverini 0:1d41bd249237 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
JohanBeverini 0:1d41bd249237 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
JohanBeverini 0:1d41bd249237 44 #define FIFO_EN 0x23
JohanBeverini 0:1d41bd249237 45 #define I2C_MST_CTRL 0x24
JohanBeverini 0:1d41bd249237 46 #define I2C_SLV0_ADDR 0x25
JohanBeverini 0:1d41bd249237 47 #define I2C_SLV0_REG 0x26
JohanBeverini 0:1d41bd249237 48 #define I2C_SLV0_CTRL 0x27
JohanBeverini 0:1d41bd249237 49 #define I2C_SLV1_ADDR 0x28
JohanBeverini 0:1d41bd249237 50 #define I2C_SLV1_REG 0x29
JohanBeverini 0:1d41bd249237 51 #define I2C_SLV1_CTRL 0x2A
JohanBeverini 0:1d41bd249237 52 #define I2C_SLV2_ADDR 0x2B
JohanBeverini 0:1d41bd249237 53 #define I2C_SLV2_REG 0x2C
JohanBeverini 0:1d41bd249237 54 #define I2C_SLV2_CTRL 0x2D
JohanBeverini 0:1d41bd249237 55 #define I2C_SLV3_ADDR 0x2E
JohanBeverini 0:1d41bd249237 56 #define I2C_SLV3_REG 0x2F
JohanBeverini 0:1d41bd249237 57 #define I2C_SLV3_CTRL 0x30
JohanBeverini 0:1d41bd249237 58 #define I2C_SLV4_ADDR 0x31
JohanBeverini 0:1d41bd249237 59 #define I2C_SLV4_REG 0x32
JohanBeverini 0:1d41bd249237 60 #define I2C_SLV4_DO 0x33
JohanBeverini 0:1d41bd249237 61 #define I2C_SLV4_CTRL 0x34
JohanBeverini 0:1d41bd249237 62 #define I2C_SLV4_DI 0x35
JohanBeverini 0:1d41bd249237 63 #define I2C_MST_STATUS 0x36
JohanBeverini 0:1d41bd249237 64 #define INT_PIN_CFG 0x37
JohanBeverini 0:1d41bd249237 65 #define INT_ENABLE 0x38
JohanBeverini 0:1d41bd249237 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
JohanBeverini 0:1d41bd249237 67 #define INT_STATUS 0x3A
JohanBeverini 0:1d41bd249237 68 #define ACCEL_XOUT_H 0x3B
JohanBeverini 0:1d41bd249237 69 #define ACCEL_XOUT_L 0x3C
JohanBeverini 0:1d41bd249237 70 #define ACCEL_YOUT_H 0x3D
JohanBeverini 0:1d41bd249237 71 #define ACCEL_YOUT_L 0x3E
JohanBeverini 0:1d41bd249237 72 #define ACCEL_ZOUT_H 0x3F
JohanBeverini 0:1d41bd249237 73 #define ACCEL_ZOUT_L 0x40
JohanBeverini 0:1d41bd249237 74 #define TEMP_OUT_H 0x41
JohanBeverini 0:1d41bd249237 75 #define TEMP_OUT_L 0x42
JohanBeverini 0:1d41bd249237 76 #define GYRO_XOUT_H 0x43
JohanBeverini 0:1d41bd249237 77 #define GYRO_XOUT_L 0x44
JohanBeverini 0:1d41bd249237 78 #define GYRO_YOUT_H 0x45
JohanBeverini 0:1d41bd249237 79 #define GYRO_YOUT_L 0x46
JohanBeverini 0:1d41bd249237 80 #define GYRO_ZOUT_H 0x47
JohanBeverini 0:1d41bd249237 81 #define GYRO_ZOUT_L 0x48
JohanBeverini 0:1d41bd249237 82 #define EXT_SENS_DATA_00 0x49
JohanBeverini 0:1d41bd249237 83 #define EXT_SENS_DATA_01 0x4A
JohanBeverini 0:1d41bd249237 84 #define EXT_SENS_DATA_02 0x4B
JohanBeverini 0:1d41bd249237 85 #define EXT_SENS_DATA_03 0x4C
JohanBeverini 0:1d41bd249237 86 #define EXT_SENS_DATA_04 0x4D
JohanBeverini 0:1d41bd249237 87 #define EXT_SENS_DATA_05 0x4E
JohanBeverini 0:1d41bd249237 88 #define EXT_SENS_DATA_06 0x4F
JohanBeverini 0:1d41bd249237 89 #define EXT_SENS_DATA_07 0x50
JohanBeverini 0:1d41bd249237 90 #define EXT_SENS_DATA_08 0x51
JohanBeverini 0:1d41bd249237 91 #define EXT_SENS_DATA_09 0x52
JohanBeverini 0:1d41bd249237 92 #define EXT_SENS_DATA_10 0x53
JohanBeverini 0:1d41bd249237 93 #define EXT_SENS_DATA_11 0x54
JohanBeverini 0:1d41bd249237 94 #define EXT_SENS_DATA_12 0x55
JohanBeverini 0:1d41bd249237 95 #define EXT_SENS_DATA_13 0x56
JohanBeverini 0:1d41bd249237 96 #define EXT_SENS_DATA_14 0x57
JohanBeverini 0:1d41bd249237 97 #define EXT_SENS_DATA_15 0x58
JohanBeverini 0:1d41bd249237 98 #define EXT_SENS_DATA_16 0x59
JohanBeverini 0:1d41bd249237 99 #define EXT_SENS_DATA_17 0x5A
JohanBeverini 0:1d41bd249237 100 #define EXT_SENS_DATA_18 0x5B
JohanBeverini 0:1d41bd249237 101 #define EXT_SENS_DATA_19 0x5C
JohanBeverini 0:1d41bd249237 102 #define EXT_SENS_DATA_20 0x5D
JohanBeverini 0:1d41bd249237 103 #define EXT_SENS_DATA_21 0x5E
JohanBeverini 0:1d41bd249237 104 #define EXT_SENS_DATA_22 0x5F
JohanBeverini 0:1d41bd249237 105 #define EXT_SENS_DATA_23 0x60
JohanBeverini 0:1d41bd249237 106 #define MOT_DETECT_STATUS 0x61
JohanBeverini 0:1d41bd249237 107 #define I2C_SLV0_DO 0x63
JohanBeverini 0:1d41bd249237 108 #define I2C_SLV1_DO 0x64
JohanBeverini 0:1d41bd249237 109 #define I2C_SLV2_DO 0x65
JohanBeverini 0:1d41bd249237 110 #define I2C_SLV3_DO 0x66
JohanBeverini 0:1d41bd249237 111 #define I2C_MST_DELAY_CTRL 0x67
JohanBeverini 0:1d41bd249237 112 #define SIGNAL_PATH_RESET 0x68
JohanBeverini 0:1d41bd249237 113 #define MOT_DETECT_CTRL 0x69
JohanBeverini 0:1d41bd249237 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
JohanBeverini 0:1d41bd249237 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
JohanBeverini 0:1d41bd249237 116 #define PWR_MGMT_2 0x6C
JohanBeverini 0:1d41bd249237 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
JohanBeverini 0:1d41bd249237 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
JohanBeverini 0:1d41bd249237 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
JohanBeverini 0:1d41bd249237 120 #define DMP_REG_1 0x70
JohanBeverini 0:1d41bd249237 121 #define DMP_REG_2 0x71
JohanBeverini 0:1d41bd249237 122 #define FIFO_COUNTH 0x72
JohanBeverini 0:1d41bd249237 123 #define FIFO_COUNTL 0x73
JohanBeverini 0:1d41bd249237 124 #define FIFO_R_W 0x74
JohanBeverini 0:1d41bd249237 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
JohanBeverini 0:1d41bd249237 126
JohanBeverini 0:1d41bd249237 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
JohanBeverini 0:1d41bd249237 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
JohanBeverini 0:1d41bd249237 129 #define ADO 0
JohanBeverini 0:1d41bd249237 130 #if ADO
JohanBeverini 0:1d41bd249237 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
JohanBeverini 0:1d41bd249237 132 #else
JohanBeverini 0:1d41bd249237 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
JohanBeverini 0:1d41bd249237 134 #endif
JohanBeverini 0:1d41bd249237 135
JohanBeverini 0:1d41bd249237 136 // Set initial input parameters
JohanBeverini 0:1d41bd249237 137 enum Ascale {
JohanBeverini 0:1d41bd249237 138 AFS_2G = 0,
JohanBeverini 0:1d41bd249237 139 AFS_4G,
JohanBeverini 0:1d41bd249237 140 AFS_8G,
JohanBeverini 0:1d41bd249237 141 AFS_16G
JohanBeverini 0:1d41bd249237 142 };
JohanBeverini 0:1d41bd249237 143
JohanBeverini 0:1d41bd249237 144 enum Gscale {
JohanBeverini 0:1d41bd249237 145 GFS_250DPS = 0,
JohanBeverini 0:1d41bd249237 146 GFS_500DPS,
JohanBeverini 0:1d41bd249237 147 GFS_1000DPS,
JohanBeverini 0:1d41bd249237 148 GFS_2000DPS
JohanBeverini 0:1d41bd249237 149 };
JohanBeverini 0:1d41bd249237 150
JohanBeverini 0:1d41bd249237 151 // Specify sensor full scale
JohanBeverini 0:1d41bd249237 152 int Gscale = GFS_250DPS;
JohanBeverini 0:1d41bd249237 153 int Ascale = AFS_2G;
JohanBeverini 0:1d41bd249237 154
JohanBeverini 0:1d41bd249237 155 //Set up I2C, (SDA,SCL)I2C_SDA
JohanBeverini 0:1d41bd249237 156 I2C i2c(PB_7, PB_6);
JohanBeverini 0:1d41bd249237 157
JohanBeverini 0:1d41bd249237 158 //DigitalOut myled(LED1);
JohanBeverini 0:1d41bd249237 159
JohanBeverini 0:1d41bd249237 160 float aRes, gRes; // scale resolutions per LSB for the sensors
JohanBeverini 0:1d41bd249237 161
JohanBeverini 0:1d41bd249237 162 // Pin definitions
JohanBeverini 0:1d41bd249237 163 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
JohanBeverini 0:1d41bd249237 164
JohanBeverini 0:1d41bd249237 165 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
JohanBeverini 0:1d41bd249237 166 float ax, ay, az; // Stores the real accel value in g's
JohanBeverini 0:1d41bd249237 167 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
JohanBeverini 0:1d41bd249237 168 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
JohanBeverini 0:1d41bd249237 169 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
JohanBeverini 0:1d41bd249237 170 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
JohanBeverini 0:1d41bd249237 171 float temperature;
JohanBeverini 0:1d41bd249237 172 float SelfTest[6];
JohanBeverini 0:1d41bd249237 173
JohanBeverini 0:1d41bd249237 174 int delt_t = 0; // used to control display output rate
JohanBeverini 0:1d41bd249237 175 int count = 0; // used to control display output rate
JohanBeverini 0:1d41bd249237 176
JohanBeverini 0:1d41bd249237 177 // parameters for 6 DoF sensor fusion calculations
JohanBeverini 0:1d41bd249237 178 float PI = 3.14159265358979323846f;
JohanBeverini 0:1d41bd249237 179 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
JohanBeverini 0:1d41bd249237 180 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
JohanBeverini 0:1d41bd249237 181 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
JohanBeverini 0:1d41bd249237 182 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
JohanBeverini 0:1d41bd249237 183 float pitch, yaw, roll;
JohanBeverini 0:1d41bd249237 184 float deltat = 0.0f; // integration interval for both filter schemes
JohanBeverini 0:1d41bd249237 185 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
JohanBeverini 0:1d41bd249237 186 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
JohanBeverini 0:1d41bd249237 187
JohanBeverini 0:1d41bd249237 188 class MPU6050 {
JohanBeverini 0:1d41bd249237 189
JohanBeverini 0:1d41bd249237 190 protected:
JohanBeverini 0:1d41bd249237 191
JohanBeverini 0:1d41bd249237 192 public:
JohanBeverini 0:1d41bd249237 193 //===================================================================================================================
JohanBeverini 0:1d41bd249237 194 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
JohanBeverini 0:1d41bd249237 195 //===================================================================================================================
JohanBeverini 0:1d41bd249237 196
JohanBeverini 0:1d41bd249237 197 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
JohanBeverini 0:1d41bd249237 198 {
JohanBeverini 0:1d41bd249237 199 char data_write[2];
JohanBeverini 0:1d41bd249237 200 data_write[0] = subAddress;
JohanBeverini 0:1d41bd249237 201 data_write[1] = data;
JohanBeverini 0:1d41bd249237 202 i2c.write(address, data_write, 2, 0);
JohanBeverini 0:1d41bd249237 203 }
JohanBeverini 0:1d41bd249237 204
JohanBeverini 0:1d41bd249237 205 char readByte(uint8_t address, uint8_t subAddress)
JohanBeverini 0:1d41bd249237 206 {
JohanBeverini 0:1d41bd249237 207 char data[1]; // `data` will store the register data
JohanBeverini 0:1d41bd249237 208 char data_write[1];
JohanBeverini 0:1d41bd249237 209 data_write[0] = subAddress;
JohanBeverini 0:1d41bd249237 210 i2c.write(address, data_write, 1, 1); // no stop
JohanBeverini 0:1d41bd249237 211 i2c.read(address, data, 1, 0);
JohanBeverini 0:1d41bd249237 212 return data[0];
JohanBeverini 0:1d41bd249237 213 }
JohanBeverini 0:1d41bd249237 214
JohanBeverini 0:1d41bd249237 215 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
JohanBeverini 0:1d41bd249237 216 {
JohanBeverini 0:1d41bd249237 217 char data[14];
JohanBeverini 0:1d41bd249237 218 char data_write[1];
JohanBeverini 0:1d41bd249237 219 data_write[0] = subAddress;
JohanBeverini 0:1d41bd249237 220 i2c.write(address, data_write, 1, 1); // no stop
JohanBeverini 0:1d41bd249237 221 i2c.read(address, data, count, 0);
JohanBeverini 0:1d41bd249237 222 for(int ii = 0; ii < count; ii++) {
JohanBeverini 0:1d41bd249237 223 dest[ii] = data[ii];
JohanBeverini 0:1d41bd249237 224 }
JohanBeverini 0:1d41bd249237 225 }
JohanBeverini 0:1d41bd249237 226
JohanBeverini 0:1d41bd249237 227
JohanBeverini 0:1d41bd249237 228 void getGres() {
JohanBeverini 0:1d41bd249237 229 switch (Gscale)
JohanBeverini 0:1d41bd249237 230 {
JohanBeverini 0:1d41bd249237 231 // Possible gyro scales (and their register bit settings) are:
JohanBeverini 0:1d41bd249237 232 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
JohanBeverini 0:1d41bd249237 233 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
JohanBeverini 0:1d41bd249237 234 case GFS_250DPS:
JohanBeverini 0:1d41bd249237 235 gRes = 250.0/32768.0;
JohanBeverini 0:1d41bd249237 236 break;
JohanBeverini 0:1d41bd249237 237 case GFS_500DPS:
JohanBeverini 0:1d41bd249237 238 gRes = 500.0/32768.0;
JohanBeverini 0:1d41bd249237 239 break;
JohanBeverini 0:1d41bd249237 240 case GFS_1000DPS:
JohanBeverini 0:1d41bd249237 241 gRes = 1000.0/32768.0;
JohanBeverini 0:1d41bd249237 242 break;
JohanBeverini 0:1d41bd249237 243 case GFS_2000DPS:
JohanBeverini 0:1d41bd249237 244 gRes = 2000.0/32768.0;
JohanBeverini 0:1d41bd249237 245 break;
JohanBeverini 0:1d41bd249237 246 }
JohanBeverini 0:1d41bd249237 247 }
JohanBeverini 0:1d41bd249237 248
JohanBeverini 0:1d41bd249237 249 void getAres() {
JohanBeverini 0:1d41bd249237 250 switch (Ascale)
JohanBeverini 0:1d41bd249237 251 {
JohanBeverini 0:1d41bd249237 252 // Possible accelerometer scales (and their register bit settings) are:
JohanBeverini 0:1d41bd249237 253 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
JohanBeverini 0:1d41bd249237 254 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
JohanBeverini 0:1d41bd249237 255 case AFS_2G:
JohanBeverini 0:1d41bd249237 256 aRes = 2.0/32768.0;
JohanBeverini 0:1d41bd249237 257 break;
JohanBeverini 0:1d41bd249237 258 case AFS_4G:
JohanBeverini 0:1d41bd249237 259 aRes = 4.0/32768.0;
JohanBeverini 0:1d41bd249237 260 break;
JohanBeverini 0:1d41bd249237 261 case AFS_8G:
JohanBeverini 0:1d41bd249237 262 aRes = 8.0/32768.0;
JohanBeverini 0:1d41bd249237 263 break;
JohanBeverini 0:1d41bd249237 264 case AFS_16G:
JohanBeverini 0:1d41bd249237 265 aRes = 16.0/32768.0;
JohanBeverini 0:1d41bd249237 266 break;
JohanBeverini 0:1d41bd249237 267 }
JohanBeverini 0:1d41bd249237 268 }
JohanBeverini 0:1d41bd249237 269
JohanBeverini 0:1d41bd249237 270
JohanBeverini 0:1d41bd249237 271 void readAccelData(int16_t * destination)
JohanBeverini 0:1d41bd249237 272 {
JohanBeverini 0:1d41bd249237 273 uint8_t rawData[6]; // x/y/z accel register data stored here
JohanBeverini 0:1d41bd249237 274 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
JohanBeverini 0:1d41bd249237 275 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
JohanBeverini 0:1d41bd249237 276 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
JohanBeverini 0:1d41bd249237 277 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
JohanBeverini 0:1d41bd249237 278 }
JohanBeverini 0:1d41bd249237 279
JohanBeverini 0:1d41bd249237 280 void readGyroData(int16_t * destination)
JohanBeverini 0:1d41bd249237 281 {
JohanBeverini 0:1d41bd249237 282 uint8_t rawData[6]; // x/y/z gyro register data stored here
JohanBeverini 0:1d41bd249237 283 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
JohanBeverini 0:1d41bd249237 284 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
JohanBeverini 0:1d41bd249237 285 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
JohanBeverini 0:1d41bd249237 286 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
JohanBeverini 0:1d41bd249237 287 }
JohanBeverini 0:1d41bd249237 288
JohanBeverini 0:1d41bd249237 289 int16_t readTempData()
JohanBeverini 0:1d41bd249237 290 {
JohanBeverini 0:1d41bd249237 291 uint8_t rawData[2]; // x/y/z gyro register data stored here
JohanBeverini 0:1d41bd249237 292 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
JohanBeverini 0:1d41bd249237 293 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
JohanBeverini 0:1d41bd249237 294 }
JohanBeverini 0:1d41bd249237 295
JohanBeverini 0:1d41bd249237 296
JohanBeverini 0:1d41bd249237 297
JohanBeverini 0:1d41bd249237 298 // Configure the motion detection control for low power accelerometer mode
JohanBeverini 0:1d41bd249237 299 void LowPowerAccelOnly()
JohanBeverini 0:1d41bd249237 300 {
JohanBeverini 0:1d41bd249237 301
JohanBeverini 0:1d41bd249237 302 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
JohanBeverini 0:1d41bd249237 303 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
JohanBeverini 0:1d41bd249237 304 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
JohanBeverini 0:1d41bd249237 305 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
JohanBeverini 0:1d41bd249237 306 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
JohanBeverini 0:1d41bd249237 307
JohanBeverini 0:1d41bd249237 308 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
JohanBeverini 0:1d41bd249237 309 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
JohanBeverini 0:1d41bd249237 310 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
JohanBeverini 0:1d41bd249237 311
JohanBeverini 0:1d41bd249237 312 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
JohanBeverini 0:1d41bd249237 313 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
JohanBeverini 0:1d41bd249237 314 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
JohanBeverini 0:1d41bd249237 315
JohanBeverini 0:1d41bd249237 316 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
JohanBeverini 0:1d41bd249237 317 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
JohanBeverini 0:1d41bd249237 318 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
JohanBeverini 0:1d41bd249237 319 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
JohanBeverini 0:1d41bd249237 320
JohanBeverini 0:1d41bd249237 321 c = readByte(MPU6050_ADDRESS, CONFIG);
JohanBeverini 0:1d41bd249237 322 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
JohanBeverini 0:1d41bd249237 323 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
JohanBeverini 0:1d41bd249237 324
JohanBeverini 0:1d41bd249237 325 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
JohanBeverini 0:1d41bd249237 326 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
JohanBeverini 0:1d41bd249237 327 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
JohanBeverini 0:1d41bd249237 328
JohanBeverini 0:1d41bd249237 329 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
JohanBeverini 0:1d41bd249237 330 // for at least the counter duration
JohanBeverini 0:1d41bd249237 331 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
JohanBeverini 0:1d41bd249237 332 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
JohanBeverini 0:1d41bd249237 333
JohanBeverini 0:1d41bd249237 334 wait(0.1); // Add delay for accumulation of samples
JohanBeverini 0:1d41bd249237 335
JohanBeverini 0:1d41bd249237 336 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
JohanBeverini 0:1d41bd249237 337 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
JohanBeverini 0:1d41bd249237 338 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
JohanBeverini 0:1d41bd249237 339
JohanBeverini 0:1d41bd249237 340 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
JohanBeverini 0:1d41bd249237 341 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
JohanBeverini 0:1d41bd249237 342 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
JohanBeverini 0:1d41bd249237 343
JohanBeverini 0:1d41bd249237 344 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
JohanBeverini 0:1d41bd249237 345 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
JohanBeverini 0:1d41bd249237 346 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
JohanBeverini 0:1d41bd249237 347
JohanBeverini 0:1d41bd249237 348 }
JohanBeverini 0:1d41bd249237 349
JohanBeverini 0:1d41bd249237 350
JohanBeverini 0:1d41bd249237 351 void resetMPU6050() {
JohanBeverini 0:1d41bd249237 352 // reset device
JohanBeverini 0:1d41bd249237 353 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
JohanBeverini 0:1d41bd249237 354 wait(0.1);
JohanBeverini 0:1d41bd249237 355 }
JohanBeverini 0:1d41bd249237 356
JohanBeverini 0:1d41bd249237 357
JohanBeverini 0:1d41bd249237 358 void initMPU6050()
JohanBeverini 0:1d41bd249237 359 {
JohanBeverini 0:1d41bd249237 360 // Initialize MPU6050 device
JohanBeverini 0:1d41bd249237 361 // wake up device
JohanBeverini 0:1d41bd249237 362 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
JohanBeverini 0:1d41bd249237 363 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
JohanBeverini 0:1d41bd249237 364
JohanBeverini 0:1d41bd249237 365 // get stable time source
JohanBeverini 0:1d41bd249237 366 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
JohanBeverini 0:1d41bd249237 367
JohanBeverini 0:1d41bd249237 368 // Configure Gyro and Accelerometer
JohanBeverini 0:1d41bd249237 369 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
JohanBeverini 0:1d41bd249237 370 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
JohanBeverini 0:1d41bd249237 371 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
JohanBeverini 0:1d41bd249237 372 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
JohanBeverini 0:1d41bd249237 373
JohanBeverini 0:1d41bd249237 374 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
JohanBeverini 0:1d41bd249237 375 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
JohanBeverini 0:1d41bd249237 376
JohanBeverini 0:1d41bd249237 377 // Set gyroscope full scale range
JohanBeverini 0:1d41bd249237 378 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
JohanBeverini 0:1d41bd249237 379 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
JohanBeverini 0:1d41bd249237 380 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
JohanBeverini 0:1d41bd249237 381 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
JohanBeverini 0:1d41bd249237 382 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
JohanBeverini 0:1d41bd249237 383
JohanBeverini 0:1d41bd249237 384 // Set accelerometer configuration
JohanBeverini 0:1d41bd249237 385 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
JohanBeverini 0:1d41bd249237 386 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
JohanBeverini 0:1d41bd249237 387 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
JohanBeverini 0:1d41bd249237 388 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
JohanBeverini 0:1d41bd249237 389
JohanBeverini 0:1d41bd249237 390 // Configure Interrupts and Bypass Enable
JohanBeverini 0:1d41bd249237 391 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
JohanBeverini 0:1d41bd249237 392 // can join the I2C bus and all can be controlled by the Arduino as master
JohanBeverini 0:1d41bd249237 393 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
JohanBeverini 0:1d41bd249237 394 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
JohanBeverini 0:1d41bd249237 395 }
JohanBeverini 0:1d41bd249237 396
JohanBeverini 0:1d41bd249237 397 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
JohanBeverini 0:1d41bd249237 398 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
JohanBeverini 0:1d41bd249237 399 void calibrateMPU6050(float * dest1, float * dest2)
JohanBeverini 0:1d41bd249237 400 {
JohanBeverini 0:1d41bd249237 401 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
JohanBeverini 0:1d41bd249237 402 uint16_t ii, packet_count, fifo_count;
JohanBeverini 0:1d41bd249237 403 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
JohanBeverini 0:1d41bd249237 404
JohanBeverini 0:1d41bd249237 405 // reset device, reset all registers, clear gyro and accelerometer bias registers
JohanBeverini 0:1d41bd249237 406 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
JohanBeverini 0:1d41bd249237 407 wait(0.1);
JohanBeverini 0:1d41bd249237 408
JohanBeverini 0:1d41bd249237 409 // get stable time source
JohanBeverini 0:1d41bd249237 410 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
JohanBeverini 0:1d41bd249237 411 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
JohanBeverini 0:1d41bd249237 412 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
JohanBeverini 0:1d41bd249237 413 wait(0.2);
JohanBeverini 0:1d41bd249237 414
JohanBeverini 0:1d41bd249237 415 // Configure device for bias calculation
JohanBeverini 0:1d41bd249237 416 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
JohanBeverini 0:1d41bd249237 417 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
JohanBeverini 0:1d41bd249237 418 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
JohanBeverini 0:1d41bd249237 419 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
JohanBeverini 0:1d41bd249237 420 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
JohanBeverini 0:1d41bd249237 421 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
JohanBeverini 0:1d41bd249237 422 wait(0.015);
JohanBeverini 0:1d41bd249237 423
JohanBeverini 0:1d41bd249237 424 // Configure MPU6050 gyro and accelerometer for bias calculation
JohanBeverini 0:1d41bd249237 425 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
JohanBeverini 0:1d41bd249237 426 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
JohanBeverini 0:1d41bd249237 427 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
JohanBeverini 0:1d41bd249237 428 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
JohanBeverini 0:1d41bd249237 429
JohanBeverini 0:1d41bd249237 430 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
JohanBeverini 0:1d41bd249237 431 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
JohanBeverini 0:1d41bd249237 432
JohanBeverini 0:1d41bd249237 433 // Configure FIFO to capture accelerometer and gyro data for bias calculation
JohanBeverini 0:1d41bd249237 434 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
JohanBeverini 0:1d41bd249237 435 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
JohanBeverini 0:1d41bd249237 436 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
JohanBeverini 0:1d41bd249237 437
JohanBeverini 0:1d41bd249237 438 // At end of sample accumulation, turn off FIFO sensor read
JohanBeverini 0:1d41bd249237 439 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
JohanBeverini 0:1d41bd249237 440 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
JohanBeverini 0:1d41bd249237 441 fifo_count = ((uint16_t)data[0] << 8) | data[1];
JohanBeverini 0:1d41bd249237 442 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
JohanBeverini 0:1d41bd249237 443
JohanBeverini 0:1d41bd249237 444 for (ii = 0; ii < packet_count; ii++) {
JohanBeverini 0:1d41bd249237 445 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
JohanBeverini 0:1d41bd249237 446 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
JohanBeverini 0:1d41bd249237 447 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
JohanBeverini 0:1d41bd249237 448 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
JohanBeverini 0:1d41bd249237 449 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
JohanBeverini 0:1d41bd249237 450 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
JohanBeverini 0:1d41bd249237 451 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
JohanBeverini 0:1d41bd249237 452 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
JohanBeverini 0:1d41bd249237 453
JohanBeverini 0:1d41bd249237 454 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
JohanBeverini 0:1d41bd249237 455 accel_bias[1] += (int32_t) accel_temp[1];
JohanBeverini 0:1d41bd249237 456 accel_bias[2] += (int32_t) accel_temp[2];
JohanBeverini 0:1d41bd249237 457 gyro_bias[0] += (int32_t) gyro_temp[0];
JohanBeverini 0:1d41bd249237 458 gyro_bias[1] += (int32_t) gyro_temp[1];
JohanBeverini 0:1d41bd249237 459 gyro_bias[2] += (int32_t) gyro_temp[2];
JohanBeverini 0:1d41bd249237 460
JohanBeverini 0:1d41bd249237 461 }
JohanBeverini 0:1d41bd249237 462 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
JohanBeverini 0:1d41bd249237 463 accel_bias[1] /= (int32_t) packet_count;
JohanBeverini 0:1d41bd249237 464 accel_bias[2] /= (int32_t) packet_count;
JohanBeverini 0:1d41bd249237 465 gyro_bias[0] /= (int32_t) packet_count;
JohanBeverini 0:1d41bd249237 466 gyro_bias[1] /= (int32_t) packet_count;
JohanBeverini 0:1d41bd249237 467 gyro_bias[2] /= (int32_t) packet_count;
JohanBeverini 0:1d41bd249237 468
JohanBeverini 0:1d41bd249237 469 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
JohanBeverini 0:1d41bd249237 470 else {accel_bias[2] += (int32_t) accelsensitivity;}
JohanBeverini 0:1d41bd249237 471
JohanBeverini 0:1d41bd249237 472 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
JohanBeverini 0:1d41bd249237 473 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
JohanBeverini 0:1d41bd249237 474 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
JohanBeverini 0:1d41bd249237 475 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
JohanBeverini 0:1d41bd249237 476 data[3] = (-gyro_bias[1]/4) & 0xFF;
JohanBeverini 0:1d41bd249237 477 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
JohanBeverini 0:1d41bd249237 478 data[5] = (-gyro_bias[2]/4) & 0xFF;
JohanBeverini 0:1d41bd249237 479
JohanBeverini 0:1d41bd249237 480 // Push gyro biases to hardware registers
JohanBeverini 0:1d41bd249237 481 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
JohanBeverini 0:1d41bd249237 482 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
JohanBeverini 0:1d41bd249237 483 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
JohanBeverini 0:1d41bd249237 484 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
JohanBeverini 0:1d41bd249237 485 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
JohanBeverini 0:1d41bd249237 486 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
JohanBeverini 0:1d41bd249237 487
JohanBeverini 0:1d41bd249237 488 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
JohanBeverini 0:1d41bd249237 489 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
JohanBeverini 0:1d41bd249237 490 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
JohanBeverini 0:1d41bd249237 491
JohanBeverini 0:1d41bd249237 492 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
JohanBeverini 0:1d41bd249237 493 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
JohanBeverini 0:1d41bd249237 494 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
JohanBeverini 0:1d41bd249237 495 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
JohanBeverini 0:1d41bd249237 496 // the accelerometer biases calculated above must be divided by 8.
JohanBeverini 0:1d41bd249237 497
JohanBeverini 0:1d41bd249237 498 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
JohanBeverini 0:1d41bd249237 499 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
JohanBeverini 0:1d41bd249237 500 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
JohanBeverini 0:1d41bd249237 501 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
JohanBeverini 0:1d41bd249237 502 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
JohanBeverini 0:1d41bd249237 503 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
JohanBeverini 0:1d41bd249237 504 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
JohanBeverini 0:1d41bd249237 505
JohanBeverini 0:1d41bd249237 506 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
JohanBeverini 0:1d41bd249237 507 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
JohanBeverini 0:1d41bd249237 508
JohanBeverini 0:1d41bd249237 509 for(ii = 0; ii < 3; ii++) {
JohanBeverini 0:1d41bd249237 510 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
JohanBeverini 0:1d41bd249237 511 }
JohanBeverini 0:1d41bd249237 512
JohanBeverini 0:1d41bd249237 513 // Construct total accelerometer bias, including calculated average accelerometer bias from above
JohanBeverini 0:1d41bd249237 514 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
JohanBeverini 0:1d41bd249237 515 accel_bias_reg[1] -= (accel_bias[1]/8);
JohanBeverini 0:1d41bd249237 516 accel_bias_reg[2] -= (accel_bias[2]/8);
JohanBeverini 0:1d41bd249237 517
JohanBeverini 0:1d41bd249237 518 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
JohanBeverini 0:1d41bd249237 519 data[1] = (accel_bias_reg[0]) & 0xFF;
JohanBeverini 0:1d41bd249237 520 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
JohanBeverini 0:1d41bd249237 521 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
JohanBeverini 0:1d41bd249237 522 data[3] = (accel_bias_reg[1]) & 0xFF;
JohanBeverini 0:1d41bd249237 523 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
JohanBeverini 0:1d41bd249237 524 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
JohanBeverini 0:1d41bd249237 525 data[5] = (accel_bias_reg[2]) & 0xFF;
JohanBeverini 0:1d41bd249237 526 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
JohanBeverini 0:1d41bd249237 527
JohanBeverini 0:1d41bd249237 528 // Push accelerometer biases to hardware registers
JohanBeverini 0:1d41bd249237 529 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
JohanBeverini 0:1d41bd249237 530 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
JohanBeverini 0:1d41bd249237 531 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
JohanBeverini 0:1d41bd249237 532 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
JohanBeverini 0:1d41bd249237 533 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
JohanBeverini 0:1d41bd249237 534 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
JohanBeverini 0:1d41bd249237 535
JohanBeverini 0:1d41bd249237 536 // Output scaled accelerometer biases for manual subtraction in the main program
JohanBeverini 0:1d41bd249237 537 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
JohanBeverini 0:1d41bd249237 538 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
JohanBeverini 0:1d41bd249237 539 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
JohanBeverini 0:1d41bd249237 540 }
JohanBeverini 0:1d41bd249237 541
JohanBeverini 0:1d41bd249237 542
JohanBeverini 0:1d41bd249237 543 // Accelerometer and gyroscope self test; check calibration wrt factory settings
JohanBeverini 0:1d41bd249237 544 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
JohanBeverini 0:1d41bd249237 545 {
JohanBeverini 0:1d41bd249237 546 uint8_t rawData[4] = {0, 0, 0, 0};
JohanBeverini 0:1d41bd249237 547 uint8_t selfTest[6];
JohanBeverini 0:1d41bd249237 548 float factoryTrim[6];
JohanBeverini 0:1d41bd249237 549
JohanBeverini 0:1d41bd249237 550 // Configure the accelerometer for self-test
JohanBeverini 0:1d41bd249237 551 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
JohanBeverini 0:1d41bd249237 552 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
JohanBeverini 0:1d41bd249237 553 wait(0.25); // Delay a while to let the device execute the self-test
JohanBeverini 0:1d41bd249237 554 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
JohanBeverini 0:1d41bd249237 555 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
JohanBeverini 0:1d41bd249237 556 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
JohanBeverini 0:1d41bd249237 557 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
JohanBeverini 0:1d41bd249237 558 // Extract the acceleration test results first
JohanBeverini 0:1d41bd249237 559 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 560 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 561 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 562 // Extract the gyration test results first
JohanBeverini 0:1d41bd249237 563 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 564 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 565 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
JohanBeverini 0:1d41bd249237 566 // Process results to allow final comparison with factory set values
JohanBeverini 0:1d41bd249237 567 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
JohanBeverini 0:1d41bd249237 568 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
JohanBeverini 0:1d41bd249237 569 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
JohanBeverini 0:1d41bd249237 570 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
JohanBeverini 0:1d41bd249237 571 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
JohanBeverini 0:1d41bd249237 572 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
JohanBeverini 0:1d41bd249237 573
JohanBeverini 0:1d41bd249237 574 // Output self-test results and factory trim calculation if desired
JohanBeverini 0:1d41bd249237 575 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
JohanBeverini 0:1d41bd249237 576 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
JohanBeverini 0:1d41bd249237 577 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
JohanBeverini 0:1d41bd249237 578 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
JohanBeverini 0:1d41bd249237 579
JohanBeverini 0:1d41bd249237 580 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
JohanBeverini 0:1d41bd249237 581 // To get to percent, must multiply by 100 and subtract result from 100
JohanBeverini 0:1d41bd249237 582 for (int i = 0; i < 6; i++) {
JohanBeverini 0:1d41bd249237 583 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
JohanBeverini 0:1d41bd249237 584 }
JohanBeverini 0:1d41bd249237 585
JohanBeverini 0:1d41bd249237 586 }
JohanBeverini 0:1d41bd249237 587
JohanBeverini 0:1d41bd249237 588
JohanBeverini 0:1d41bd249237 589 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
JohanBeverini 0:1d41bd249237 590 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
JohanBeverini 0:1d41bd249237 591 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
JohanBeverini 0:1d41bd249237 592 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
JohanBeverini 0:1d41bd249237 593 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
JohanBeverini 0:1d41bd249237 594 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
JohanBeverini 0:1d41bd249237 595 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
JohanBeverini 0:1d41bd249237 596 {
JohanBeverini 0:1d41bd249237 597 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
JohanBeverini 0:1d41bd249237 598 float norm; // vector norm
JohanBeverini 0:1d41bd249237 599 float f1, f2, f3; // objective funcyion elements
JohanBeverini 0:1d41bd249237 600 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
JohanBeverini 0:1d41bd249237 601 float qDot1, qDot2, qDot3, qDot4;
JohanBeverini 0:1d41bd249237 602 float hatDot1, hatDot2, hatDot3, hatDot4;
JohanBeverini 0:1d41bd249237 603 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
JohanBeverini 0:1d41bd249237 604
JohanBeverini 0:1d41bd249237 605 // Auxiliary variables to avoid repeated arithmetic
JohanBeverini 0:1d41bd249237 606 float _halfq1 = 0.5f * q1;
JohanBeverini 0:1d41bd249237 607 float _halfq2 = 0.5f * q2;
JohanBeverini 0:1d41bd249237 608 float _halfq3 = 0.5f * q3;
JohanBeverini 0:1d41bd249237 609 float _halfq4 = 0.5f * q4;
JohanBeverini 0:1d41bd249237 610 float _2q1 = 2.0f * q1;
JohanBeverini 0:1d41bd249237 611 float _2q2 = 2.0f * q2;
JohanBeverini 0:1d41bd249237 612 float _2q3 = 2.0f * q3;
JohanBeverini 0:1d41bd249237 613 float _2q4 = 2.0f * q4;
JohanBeverini 0:1d41bd249237 614 // float _2q1q3 = 2.0f * q1 * q3;
JohanBeverini 0:1d41bd249237 615 // float _2q3q4 = 2.0f * q3 * q4;
JohanBeverini 0:1d41bd249237 616
JohanBeverini 0:1d41bd249237 617 // Normalise accelerometer measurement
JohanBeverini 0:1d41bd249237 618 norm = sqrt(ax * ax + ay * ay + az * az);
JohanBeverini 0:1d41bd249237 619 if (norm == 0.0f) return; // handle NaN
JohanBeverini 0:1d41bd249237 620 norm = 1.0f/norm;
JohanBeverini 0:1d41bd249237 621 ax *= norm;
JohanBeverini 0:1d41bd249237 622 ay *= norm;
JohanBeverini 0:1d41bd249237 623 az *= norm;
JohanBeverini 0:1d41bd249237 624
JohanBeverini 0:1d41bd249237 625 // Compute the objective function and Jacobian
JohanBeverini 0:1d41bd249237 626 f1 = _2q2 * q4 - _2q1 * q3 - ax;
JohanBeverini 0:1d41bd249237 627 f2 = _2q1 * q2 + _2q3 * q4 - ay;
JohanBeverini 0:1d41bd249237 628 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
JohanBeverini 0:1d41bd249237 629 J_11or24 = _2q3;
JohanBeverini 0:1d41bd249237 630 J_12or23 = _2q4;
JohanBeverini 0:1d41bd249237 631 J_13or22 = _2q1;
JohanBeverini 0:1d41bd249237 632 J_14or21 = _2q2;
JohanBeverini 0:1d41bd249237 633 J_32 = 2.0f * J_14or21;
JohanBeverini 0:1d41bd249237 634 J_33 = 2.0f * J_11or24;
JohanBeverini 0:1d41bd249237 635
JohanBeverini 0:1d41bd249237 636 // Compute the gradient (matrix multiplication)
JohanBeverini 0:1d41bd249237 637 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
JohanBeverini 0:1d41bd249237 638 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
JohanBeverini 0:1d41bd249237 639 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
JohanBeverini 0:1d41bd249237 640 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
JohanBeverini 0:1d41bd249237 641
JohanBeverini 0:1d41bd249237 642 // Normalize the gradient
JohanBeverini 0:1d41bd249237 643 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
JohanBeverini 0:1d41bd249237 644 hatDot1 /= norm;
JohanBeverini 0:1d41bd249237 645 hatDot2 /= norm;
JohanBeverini 0:1d41bd249237 646 hatDot3 /= norm;
JohanBeverini 0:1d41bd249237 647 hatDot4 /= norm;
JohanBeverini 0:1d41bd249237 648
JohanBeverini 0:1d41bd249237 649 // Compute estimated gyroscope biases
JohanBeverini 0:1d41bd249237 650 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
JohanBeverini 0:1d41bd249237 651 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
JohanBeverini 0:1d41bd249237 652 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
JohanBeverini 0:1d41bd249237 653
JohanBeverini 0:1d41bd249237 654 // Compute and remove gyroscope biases
JohanBeverini 0:1d41bd249237 655 gbiasx += gerrx * deltat * zeta;
JohanBeverini 0:1d41bd249237 656 gbiasy += gerry * deltat * zeta;
JohanBeverini 0:1d41bd249237 657 gbiasz += gerrz * deltat * zeta;
JohanBeverini 0:1d41bd249237 658 // gx -= gbiasx;
JohanBeverini 0:1d41bd249237 659 // gy -= gbiasy;
JohanBeverini 0:1d41bd249237 660 // gz -= gbiasz;
JohanBeverini 0:1d41bd249237 661
JohanBeverini 0:1d41bd249237 662 // Compute the quaternion derivative
JohanBeverini 0:1d41bd249237 663 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
JohanBeverini 0:1d41bd249237 664 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
JohanBeverini 0:1d41bd249237 665 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
JohanBeverini 0:1d41bd249237 666 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
JohanBeverini 0:1d41bd249237 667
JohanBeverini 0:1d41bd249237 668 // Compute then integrate estimated quaternion derivative
JohanBeverini 0:1d41bd249237 669 q1 += (qDot1 -(beta * hatDot1)) * deltat;
JohanBeverini 0:1d41bd249237 670 q2 += (qDot2 -(beta * hatDot2)) * deltat;
JohanBeverini 0:1d41bd249237 671 q3 += (qDot3 -(beta * hatDot3)) * deltat;
JohanBeverini 0:1d41bd249237 672 q4 += (qDot4 -(beta * hatDot4)) * deltat;
JohanBeverini 0:1d41bd249237 673
JohanBeverini 0:1d41bd249237 674 // Normalize the quaternion
JohanBeverini 0:1d41bd249237 675 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
JohanBeverini 0:1d41bd249237 676 norm = 1.0f/norm;
JohanBeverini 0:1d41bd249237 677 q[0] = q1 * norm;
JohanBeverini 0:1d41bd249237 678 q[1] = q2 * norm;
JohanBeverini 0:1d41bd249237 679 q[2] = q3 * norm;
JohanBeverini 0:1d41bd249237 680 q[3] = q4 * norm;
JohanBeverini 0:1d41bd249237 681
JohanBeverini 0:1d41bd249237 682 }
JohanBeverini 0:1d41bd249237 683
JohanBeverini 0:1d41bd249237 684
JohanBeverini 0:1d41bd249237 685 };
JohanBeverini 0:1d41bd249237 686 #endif