wifi test
Dependencies: X_NUCLEO_IKS01A2 mbed-http
easy-connect/wifi-ism43362/ISM43362Interface.h
- Committer:
- JMF
- Date:
- 2018-09-05
- Revision:
- 0:24d3eb812fd4
File content as of revision 0:24d3eb812fd4:
/* ISM43362 implementation of NetworkInterfaceAPI
* Copyright (c) STMicroelectronics 2017
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ISM43362_INTERFACE_H
#define ISM43362_INTERFACE_H
#include "mbed.h"
#include "ISM43362.h"
#define ISM43362_SOCKET_COUNT 4
/** ISM43362Interface class
* Implementation of the NetworkStack for the ISM43362
*/
class ISM43362Interface : public NetworkStack, public WiFiInterface
{
public:
/** ISM43362Interface lifetime
* @param debug Enable debugging
*/
ISM43362Interface(bool debug = MBED_CONF_ISM43362_WIFI_DEBUG);
/** Start the interface
*
* Attempts to connect to a WiFi network. Requires ssid and passphrase to be set.
* If passphrase is invalid, NSAPI_ERROR_AUTH_ERROR is returned.
*
* @return 0 on success, negative error code on failure
*/
virtual int connect();
/** Start the interface
*
* Attempts to connect to a WiFi network.
*
* @param ssid Name of the network to connect to
* @param pass Security passphrase to connect to the network
* @param security Type of encryption for connection (Default: NSAPI_SECURITY_NONE)
* @param channel This parameter is not supported, setting it to anything else than 0 will result in NSAPI_ERROR_UNSUPPORTED
* @return 0 on success, or error code on failure
*/
virtual int connect(const char *ssid, const char *pass, nsapi_security_t security = NSAPI_SECURITY_NONE,
uint8_t channel = 0);
/** Translates a hostname to an IP address with specific version
*
* The hostname may be either a domain name or an IP address. If the
* hostname is an IP address, no network transactions will be performed.
*
*
* @param host Hostname to resolve
* @param address Destination for the host SocketAddress
* @param version IP version of address to resolve, NSAPI_UNSPEC indicates
* version is chosen by the stack (defaults to NSAPI_UNSPEC)
* @return 0 on success, negative error code on failure
*/
virtual nsapi_error_t gethostbyname(const char *name, SocketAddress *address, nsapi_version_t version = NSAPI_UNSPEC);
/** Set the WiFi network credentials
*
* @param ssid Name of the network to connect to
* @param pass Security passphrase to connect to the network
* @param security Type of encryption for connection
* (defaults to NSAPI_SECURITY_NONE)
* @return 0 on success, or error code on failure
*/
virtual int set_credentials(const char *ssid, const char *pass, nsapi_security_t security = NSAPI_SECURITY_NONE);
/** Set the WiFi network channel - NOT SUPPORTED
*
* This function is not supported and will return NSAPI_ERROR_UNSUPPORTED
*
* @param channel Channel on which the connection is to be made, or 0 for any (Default: 0)
* @return Not supported, returns NSAPI_ERROR_UNSUPPORTED
*/
virtual int set_channel(uint8_t channel);
/** Stop the interface
* @return 0 on success, negative on failure
*/
virtual int disconnect();
/** Get the internally stored IP address
* @return IP address of the interface or null if not yet connected
*/
virtual const char *get_ip_address();
/** Get the internally stored MAC address
* @return MAC address of the interface
*/
virtual const char *get_mac_address();
/** Get the local gateway
*
* @return Null-terminated representation of the local gateway
* or null if no network mask has been recieved
*/
virtual const char *get_gateway();
/** Get the local network mask
*
* @return Null-terminated representation of the local network mask
* or null if no network mask has been recieved
*/
virtual const char *get_netmask();
/** Gets the current radio signal strength for active connection
*
* @return Connection strength in dBm (negative value)
*/
virtual int8_t get_rssi();
/** Scan for available networks
*
* This function will block.
*
* @param ap Pointer to allocated array to store discovered AP
* @param count Size of allocated @a res array, or 0 to only count available AP
* @return Number of entries in @a, or if @a count was 0 number of available networks, negative on error
* see @a nsapi_error
*/
virtual int scan(WiFiAccessPoint *res, unsigned count);
/** Translates a hostname to an IP address with specific version
*
* The hostname may be either a domain name or an IP address. If the
* hostname is an IP address, no network transactions will be performed.
*
* If no stack-specific DNS resolution is provided, the hostname
* will be resolve using a UDP socket on the stack.
*
* @param address Destination for the host SocketAddress
* @param host Hostname to resolve
* @param version IP version of address to resolve, NSAPI_UNSPEC indicates
* version is chosen by the stack (defaults to NSAPI_UNSPEC)
* @return 0 on success, negative error code on failure
*/
using NetworkInterface::gethostbyname;
/** Add a domain name server to list of servers to query
*
* @param addr Destination for the host address
* @return 0 on success, negative error code on failure
*/
using NetworkInterface::add_dns_server;
protected:
/** Open a socket
* @param handle Handle in which to store new socket
* @param proto Type of socket to open, NSAPI_TCP or NSAPI_UDP
* @return 0 on success, negative on failure
*/
virtual int socket_open(void **handle, nsapi_protocol_t proto);
/** Close the socket
* @param handle Socket handle
* @return 0 on success, negative on failure
* @note On failure, any memory associated with the socket must still
* be cleaned up
*/
virtual int socket_close(void *handle);
/** Bind a server socket to a specific port
* @param handle Socket handle
* @param address Local address to listen for incoming connections on
* @return 0 on success, negative on failure.
*/
virtual int socket_bind(void *handle, const SocketAddress &address);
/** Start listening for incoming connections
* @param handle Socket handle
* @param backlog Number of pending connections that can be queued up at any
* one time [Default: 1]
* @return 0 on success, negative on failure
*/
virtual int socket_listen(void *handle, int backlog);
/** Connects this TCP socket to the server
* @param handle Socket handle
* @param address SocketAddress to connect to
* @return 0 on success, negative on failure
*/
virtual int socket_connect(void *handle, const SocketAddress &address);
/** Accept a new connection.
* @param handle Handle in which to store new socket
* @param server Socket handle to server to accept from
* @return 0 on success, negative on failure
* @note This call is not-blocking, if this call would block, must
* immediately return NSAPI_ERROR_WOULD_WAIT
*/
virtual int socket_accept(void *handle, void **socket, SocketAddress *address);
/** Send data to the remote host
* @param handle Socket handle
* @param data The buffer to send to the host
* @param size The length of the buffer to send
* @return Number of written bytes on success, negative on failure
* @note This call is not-blocking, if this call would block, must
* immediately return NSAPI_ERROR_WOULD_WAIT
*/
virtual int socket_send(void *handle, const void *data, unsigned size);
/** Receive data from the remote host
* @param handle Socket handle
* @param data The buffer in which to store the data received from the host
* @param size The maximum length of the buffer
* @return Number of received bytes on success, negative on failure
* @note This call is not-blocking, if this call would block, must
* immediately return NSAPI_ERROR_WOULD_WAIT
*/
virtual int socket_recv(void *handle, void *data, unsigned size);
/** Send a packet to a remote endpoint
* @param handle Socket handle
* @param address The remote SocketAddress
* @param data The packet to be sent
* @param size The length of the packet to be sent
* @return The number of written bytes on success, negative on failure
* @note This call is not-blocking, if this call would block, must
* immediately return NSAPI_ERROR_WOULD_WAIT
*/
virtual int socket_sendto(void *handle, const SocketAddress &address, const void *data, unsigned size);
/** Receive a packet from a remote endpoint
* @param handle Socket handle
* @param address Destination for the remote SocketAddress or null
* @param buffer The buffer for storing the incoming packet data
* If a packet is too long to fit in the supplied buffer,
* excess bytes are discarded
* @param size The length of the buffer
* @return The number of received bytes on success, negative on failure
* @note This call is not-blocking, if this call would block, must
* immediately return NSAPI_ERROR_WOULD_WAIT
*/
virtual int socket_recvfrom(void *handle, SocketAddress *address, void *buffer, unsigned size);
/** Register a callback on state change of the socket
* @param handle Socket handle
* @param callback Function to call on state change
* @param data Argument to pass to callback
* @note Callback may be called in an interrupt context.
*/
virtual void socket_attach(void *handle, void (*callback)(void *), void *data);
/** Provide access to the NetworkStack object
*
* @return The underlying NetworkStack object
*/
virtual NetworkStack *get_stack()
{
return this;
}
private:
ISM43362 _ism;
bool _ids[ISM43362_SOCKET_COUNT];
uint32_t _socket_obj[ISM43362_SOCKET_COUNT]; // store addresses of socket handles
Mutex _mutex;
Thread thread_read_socket;
char ap_ssid[33]; /* 32 is what 802.11 defines as longest possible name; +1 for the \0 */
ism_security_t ap_sec;
uint8_t ap_ch;
char ap_pass[64]; /* The longest allowed passphrase */
bool _ism_debug;
uint32_t _FwVersion;
void event();
struct {
void (*callback)(void *);
void *data;
} _cbs[ISM43362_SOCKET_COUNT];
/** Function called by the socket read thread to check if data is available on the wifi module
*
*/
virtual void socket_check_read();
int socket_send_nolock(void *handle, const void *data, unsigned size);
int socket_connect_nolock(void *handle, const SocketAddress &addr);
};
#endif