Proportional, integral, derivative controller library. Ported from the Arduino PID library by Brett Beauregard.
Diff: PID.cpp
- Revision:
- 0:6e12a3e5af19
- Child:
- 1:227ce995f635
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PID.cpp Thu Sep 02 16:48:10 2010 +0000 @@ -0,0 +1,324 @@ +/** + * @author Aaron Berk + * + * @section LICENSE + * + * Copyright (c) 2010 ARM Limited + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * + * @section DESCRIPTION + * + * A PID controller is a widely used feedback controller commonly found in + * industry. + * + * This library is a port of Brett Beauregard's Arduino PID library: + * + * http://www.arduino.cc/playground/Code/PIDLibrary + * + * The wikipedia article on PID controllers is a good place to start on + * understanding how they work: + * + * http://en.wikipedia.org/wiki/PID_controller + * + * For a clear and elegant explanation of how to implement and tune a + * controller, the controlguru website by Douglas J. Cooper (who also happened + * to be Brett's controls professor) is an excellent reference: + * + * http://www.controlguru.com/ + */ + +/** + * Includes + */ +#include "PID.h" + +PID::PID(float Kc, float tauI, float tauD, float interval) { + + usingFeedForward = false; + inAuto = false; + + //Default the limits to the full range of I/O: 3.3V + //Make sure to set these to more appropriate limits for + //your application. + setInputLimits(0.0, 3.3); + setOutputLimits(0.0, 3.3); + + tSample_ = interval; + + setTunings(Kc, tauI, tauD); + + setPoint_ = 0.0; + processVariable_ = 0.0; + prevProcessVariable_ = 0.0; + controllerOutput_ = 0.0; + prevControllerOutput_ = 0.0; + + accError_ = 0.0; + bias_ = 0.0; + + realOutput_ = 0.0; + +} + +void PID::setInputLimits(float inMin, float inMax) { + + //Make sure we haven't been given impossible values. + if (inMin >= inMax) { + return; + } + + //Rescale the working variables to reflect the changes. + prevProcessVariable_ *= (inMax - inMin) / inSpan_; + accError_ *= (inMax - inMin) / inSpan_; + + //Make sure the working variables are within the new limits. + if (prevProcessVariable_ > 1) { + prevProcessVariable_ = 1; + } else if (prevProcessVariable_ < 0) { + prevProcessVariable_ = 0; + } + + inMin_ = inMin; + inMax_ = inMax; + inSpan_ = inMax - inMin; + +} + +void PID::setOutputLimits(float outMin, float outMax) { + + //Make sure we haven't been given impossible values. + if (outMin >= outMax) { + return; + } + + //Rescale the working variables to reflect the changes. + prevControllerOutput_ *= (outMax - outMin) / outSpan_; + + //Make sure the working variables are within the new limits. + if (prevControllerOutput_ > 1) { + prevControllerOutput_ = 1; + } else if (prevControllerOutput_ < 0) { + prevControllerOutput_ = 0; + } + + outMin_ = outMin; + outMax_ = outMax; + outSpan_ = outMax - outMin; + +} + +void PID::setTunings(float Kc, float tauI, float tauD) { + + //Verify that the tunings make sense. + if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) { + return; + } + + //Store raw values to hand back to user on request. + pParam_ = Kc; + iParam_ = tauI; + dParam_ = tauD; + + float tempTauR; + + if (tauI == 0.0) { + tempTauR = 0.0; + } else { + tempTauR = (1.0 / tauI) * tSample_; + } + + //For "bumpless transfer" we need to rescale the accumulated error. + if (inAuto) { + if (tempTauR == 0.0) { + accError_ = 0.0; + } else { + accError_ *= (Kc_ * tauR_) / (Kc * tempTauR); + } + } + + Kc_ = Kc; + tauR_ = tempTauR; + tauD_ = tauD / tSample_; + +} + +void PID::reset(void) { + + float scaledBias = 0.0; + + if (usingFeedForward) { + scaledBias = (bias_ - outMin_) / outSpan_; + } else { + scaledBias = (realOutput_ - outMin_) / outSpan_; + } + + prevControllerOutput_ = scaledBias; + prevProcessVariable_ = (processVariable_ - inMin_) / inSpan_; + + //Clear any error in the integral. + accError_ = 0; + +} + +void PID::setMode(int mode) { + + //We were in manual, and we just got set to auto. + //Reset the controller internals. + if (mode != 0 && !inAuto) { + reset(); + } + + inAuto = (mode != 0); + +} + +void PID::setInterval(float interval) { + + if (interval > 0) { + //Convert the time-based tunings to reflect this change. + tauR_ *= (interval / tSample_); + accError_ *= (tSample_ / interval); + tauD_ *= (interval / tSample_); + tSample_ = interval; + } + +} + +void PID::setSetPoint(float sp) { + + setPoint_ = sp; + +} + +void PID::setProcessValue(float pv) { + + processVariable_ = pv; + +} + +void PID::setBias(float bias){ + + bias_ = bias; + usingFeedForward = 1; + +} + +float PID::compute() { + + //Pull in the input and setpoint, and scale them into percent span. + float scaledPV = (processVariable_ - inMin_) / inSpan_; + + if (scaledPV > 1.0) { + scaledPV = 1.0; + } else if (scaledPV < 0.0) { + scaledPV = 0.0; + } + + float scaledSP = (setPoint_ - inMin_) / inSpan_; + if (scaledSP > 1.0) { + scaledSP = 1; + } else if (scaledSP < 0.0) { + scaledSP = 0; + } + + float error = scaledSP - scaledPV; + + //Check and see if the output is pegged at a limit and only + //integrate if it is not. This is to prevent reset-windup. + if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) { + accError_ += error; + } + + //Compute the current slope of the input signal. + float dMeas = (scaledPV - prevProcessVariable_) / tSample_; + + float scaledBias = 0.0; + + if (usingFeedForward) { + scaledBias = (bias_ - outMin_) / outSpan_; + } + + //Perform the PID calculation. + controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas)); + + //Make sure the computed output is within output constraints. + if (controllerOutput_ < 0.0) { + controllerOutput_ = 0.0; + } else if (controllerOutput_ > 1.0) { + controllerOutput_ = 1.0; + } + + //Remember this output for the windup check next time. + prevControllerOutput_ = controllerOutput_; + //Remember the input for the derivative calculation next time. + prevProcessVariable_ = scaledPV; + + //Scale the output from percent span back out to a real world number. + return ((controllerOutput_ * outSpan_) + outMin_); + +} + +float PID::getInMin() { + + return inMin_; + +} + +float PID::getInMax() { + + return inMax_; + +} + +float PID::getOutMin() { + + return outMin_; + +} + +float PID::getOutMax() { + + return outMax_; + +} + +float PID::getInterval() { + + return tSample_; + +} + +float PID::getPParam() { + + return pParam_; + +} + +float PID::getIParam() { + + return iParam_; + +} + +float PID::getDParam() { + + return dParam_; + +}