Rev0

Dependencies:   PID QEI-Intruptinmode-set SB1602E mbed

Fork of PreHeater-Rev2 by Kazu Zamasu

プリヒータ基板のファームウェアです。 Rev2基板用ですので、温度センサーなどが変更になっています。

This is Pre Heater device firmware. This firmware is Rev2 PCB design.

Committer:
Hapi_Tech
Date:
Wed Jul 29 12:08:17 2015 +0000
Revision:
3:e4253d33ff0c
Parent:
2:6315824f8a29
Rev3

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kazu_zamasu 0:b2cea429ec0b 1 /*The MIT License (MIT)
kazu_zamasu 0:b2cea429ec0b 2
kazu_zamasu 0:b2cea429ec0b 3 Copyright (c) <2015> <Kazumichi Aoki>
kazu_zamasu 0:b2cea429ec0b 4
kazu_zamasu 0:b2cea429ec0b 5 Permission is hereby granted, free of charge, to any person obtaining a copy
kazu_zamasu 0:b2cea429ec0b 6 of this software and associated documentation files (the "Software"), to deal
kazu_zamasu 0:b2cea429ec0b 7 in the Software without restriction, including without limitation the rights
kazu_zamasu 0:b2cea429ec0b 8 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
kazu_zamasu 0:b2cea429ec0b 9 copies of the Software, and to permit persons to whom the Software is
kazu_zamasu 0:b2cea429ec0b 10 furnished to do so, subject to the following conditions:
kazu_zamasu 0:b2cea429ec0b 11
kazu_zamasu 0:b2cea429ec0b 12 The above copyright notice and this permission notice shall be included in
kazu_zamasu 0:b2cea429ec0b 13 all copies or substantial portions of the Software.
kazu_zamasu 0:b2cea429ec0b 14
kazu_zamasu 0:b2cea429ec0b 15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
kazu_zamasu 0:b2cea429ec0b 16 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
kazu_zamasu 0:b2cea429ec0b 17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
kazu_zamasu 0:b2cea429ec0b 18 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
kazu_zamasu 0:b2cea429ec0b 19 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
kazu_zamasu 0:b2cea429ec0b 20 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
kazu_zamasu 0:b2cea429ec0b 21 THE SOFTWARE.
kazu_zamasu 0:b2cea429ec0b 22 */
kazu_zamasu 0:b2cea429ec0b 23
kazu_zamasu 0:b2cea429ec0b 24
kazu_zamasu 0:b2cea429ec0b 25
kazu_zamasu 0:b2cea429ec0b 26 #include "mbed.h"
kazu_zamasu 0:b2cea429ec0b 27 #include "PID.h"
kazu_zamasu 0:b2cea429ec0b 28 #include "math.h"
kazu_zamasu 0:b2cea429ec0b 29 #include "SB1602E.h"
kazu_zamasu 0:b2cea429ec0b 30 #include "QEI.h"
Hapi_Tech 2:6315824f8a29 31
kazu_zamasu 0:b2cea429ec0b 32 //GPIO initilaize
Hapi_Tech 2:6315824f8a29 33 AnalogIn THAI(dp4);
Hapi_Tech 2:6315824f8a29 34 PwmOut out(dp18);
Hapi_Tech 2:6315824f8a29 35 DigitalOut ledR(dp17),ledG(dp25),ledB(dp26);
Hapi_Tech 2:6315824f8a29 36 DigitalIn RunPB(dp10);
Hapi_Tech 2:6315824f8a29 37 Serial pc(dp16, dp15); // tx, rx
Hapi_Tech 2:6315824f8a29 38 Ticker Timer_ticker;
kazu_zamasu 0:b2cea429ec0b 39
kazu_zamasu 0:b2cea429ec0b 40 /* PID constant initialize Kc, Ti, Td, interval */
Hapi_Tech 2:6315824f8a29 41 #define P 5.0 //propotional band
Hapi_Tech 2:6315824f8a29 42 #define I 2.0 //Integral
Hapi_Tech 2:6315824f8a29 43 #define D 0.0 //Devide
kazu_zamasu 0:b2cea429ec0b 44 #define RATE 0.1 //update time sec
Hapi_Tech 2:6315824f8a29 45 #define InitialSP 45.0 // Boot Setpoint initial temeprature
Hapi_Tech 3:e4253d33ff0c 46 #define Bias 0.0 //PID output bias
kazu_zamasu 0:b2cea429ec0b 47 PID TIC(P, I, D, RATE);
kazu_zamasu 0:b2cea429ec0b 48
kazu_zamasu 0:b2cea429ec0b 49 /*LCD I2C pin initialize */
kazu_zamasu 0:b2cea429ec0b 50 char *init_massage = "Hello!";
kazu_zamasu 0:b2cea429ec0b 51 SB1602E lcd(dp5, dp27, init_massage); // SDA, SCL
kazu_zamasu 0:b2cea429ec0b 52 /*QEI initialize */
kazu_zamasu 0:b2cea429ec0b 53 #define ROTATE_PER_REVOLUTIONS 24
Hapi_Tech 1:1440321bc326 54 QEI wheel(dp11, dp13, NC, PullUp, ROTATE_PER_REVOLUTIONS, QEI::X2_ENCODING);
kazu_zamasu 0:b2cea429ec0b 55
kazu_zamasu 0:b2cea429ec0b 56 //Initial
Hapi_Tech 3:e4253d33ff0c 57 float temp_sv_input;
kazu_zamasu 0:b2cea429ec0b 58 bool Run(false);
kazu_zamasu 0:b2cea429ec0b 59 double temp_pv,temp_cal;
Hapi_Tech 2:6315824f8a29 60
Hapi_Tech 3:e4253d33ff0c 61 /*PID SP encorder calcurate temperature */
Hapi_Tech 3:e4253d33ff0c 62 #define EncoderDiv 20.0 //Divide encoder 1Pulse per 1℃ ex. 1/20=0.05 enc 1click 0.05C
Hapi_Tech 2:6315824f8a29 63 #define RangeSPL 30.0 //Celcius low side temperature
Hapi_Tech 2:6315824f8a29 64 #define RangeSPH 100.0 //Celcius high side temperature
Hapi_Tech 2:6315824f8a29 65 int encPulseCnt = ( (InitialSP - RangeSPL) * EncoderDiv );
Hapi_Tech 1:1440321bc326 66 int encPulses = 0;
Hapi_Tech 1:1440321bc326 67 int end_getPulses_old = 0;
kazu_zamasu 0:b2cea429ec0b 68
kazu_zamasu 0:b2cea429ec0b 69 /*PB control*/
kazu_zamasu 0:b2cea429ec0b 70 void runmode()
kazu_zamasu 0:b2cea429ec0b 71 {
kazu_zamasu 0:b2cea429ec0b 72 Run = !Run;
kazu_zamasu 0:b2cea429ec0b 73 }
kazu_zamasu 0:b2cea429ec0b 74
Hapi_Tech 2:6315824f8a29 75 void TimerCall_10ms()
Hapi_Tech 2:6315824f8a29 76 {
Hapi_Tech 2:6315824f8a29 77 static bool old_RunPB=0;
Hapi_Tech 2:6315824f8a29 78 bool tmp_RunPB=0;
Hapi_Tech 2:6315824f8a29 79 tmp_RunPB = RunPB;
Hapi_Tech 3:e4253d33ff0c 80 if( (old_RunPB != tmp_RunPB) && (tmp_RunPB == 1) ) {
Hapi_Tech 2:6315824f8a29 81 runmode();
Hapi_Tech 2:6315824f8a29 82 }
Hapi_Tech 2:6315824f8a29 83 old_RunPB = tmp_RunPB;
Hapi_Tech 2:6315824f8a29 84 }
Hapi_Tech 2:6315824f8a29 85
Hapi_Tech 2:6315824f8a29 86 void cal_temp()
kazu_zamasu 0:b2cea429ec0b 87 {
Hapi_Tech 3:e4253d33ff0c 88 /*SP temperature high low limit*/
Hapi_Tech 2:6315824f8a29 89 encPulseCnt = encPulseCnt + (encPulses - end_getPulses_old);
Hapi_Tech 3:e4253d33ff0c 90 if( encPulseCnt < 0 ) { //Lower Limit
Hapi_Tech 2:6315824f8a29 91 encPulseCnt = 0;
Hapi_Tech 2:6315824f8a29 92 }
Hapi_Tech 3:e4253d33ff0c 93 if( encPulseCnt > ( (RangeSPH-RangeSPL) * EncoderDiv) ) { //Upper Limit
Hapi_Tech 2:6315824f8a29 94 encPulseCnt = (RangeSPH-RangeSPL) * EncoderDiv;
Hapi_Tech 2:6315824f8a29 95 }
Hapi_Tech 2:6315824f8a29 96 temp_sv_input = encPulseCnt / EncoderDiv + RangeSPL; //calc encoder Pulse to SetPoint
Hapi_Tech 1:1440321bc326 97
Hapi_Tech 2:6315824f8a29 98 /*LCD Display section */
Hapi_Tech 2:6315824f8a29 99 lcd.printf(0,0, "SP %.1f", temp_sv_input);
Hapi_Tech 2:6315824f8a29 100 }
Hapi_Tech 2:6315824f8a29 101
Hapi_Tech 2:6315824f8a29 102
Hapi_Tech 2:6315824f8a29 103 int main()
Hapi_Tech 2:6315824f8a29 104 {
Hapi_Tech 2:6315824f8a29 105 Timer_ticker.attach_us(&TimerCall_10ms, 10000);
Hapi_Tech 2:6315824f8a29 106 RunPB.mode(PullDown);
Hapi_Tech 2:6315824f8a29 107 #define LCDCont 0x32 //LCD contrast set from 00 to 3f 64resolution defult set is 32step
Hapi_Tech 2:6315824f8a29 108 lcd.contrast(LCDCont);
Hapi_Tech 3:e4253d33ff0c 109 /* PWM setting.*/
Hapi_Tech 2:6315824f8a29 110 out.period(0.02);
Hapi_Tech 2:6315824f8a29 111 cal_temp();
Hapi_Tech 2:6315824f8a29 112
Hapi_Tech 2:6315824f8a29 113 while (1) {
Hapi_Tech 1:1440321bc326 114 encPulses = wheel.getPulses();
Hapi_Tech 3:e4253d33ff0c 115 if(end_getPulses_old != encPulses) {
Hapi_Tech 2:6315824f8a29 116 cal_temp();
kazu_zamasu 0:b2cea429ec0b 117 }
Hapi_Tech 1:1440321bc326 118 end_getPulses_old = encPulses;
Hapi_Tech 1:1440321bc326 119
Hapi_Tech 1:1440321bc326 120 /*LM26LVCISDX-115 Factory Preset Temperature Switch and Temperature Sensor Gain3 115C trip sensor calculation value.*/
Hapi_Tech 1:1440321bc326 121 temp_cal = THAI.read() * 3300;
Hapi_Tech 1:1440321bc326 122 temp_pv = -0.00000000007*pow(temp_cal,3.0)-0.000002*pow(temp_cal,2.0)-0.091*temp_cal+201.5;
Hapi_Tech 2:6315824f8a29 123 lcd.printf(0,1, "PV %.1f\n", temp_pv);
Hapi_Tech 3:e4253d33ff0c 124 /*Tenperature indicater */
kazu_zamasu 0:b2cea429ec0b 125 if (Run == true) {
kazu_zamasu 0:b2cea429ec0b 126 if ((temp_pv - temp_sv_input) >= 1.5) {
kazu_zamasu 0:b2cea429ec0b 127 ledR = 0;
kazu_zamasu 0:b2cea429ec0b 128 ledG = 1;
kazu_zamasu 0:b2cea429ec0b 129 ledB = 1;
kazu_zamasu 0:b2cea429ec0b 130 /* 1.5C low temperature */
kazu_zamasu 0:b2cea429ec0b 131 } else if ((temp_sv_input - temp_pv ) >= 1.5 ) {
kazu_zamasu 0:b2cea429ec0b 132 ledR = 1;
kazu_zamasu 0:b2cea429ec0b 133 ledG = 1;
kazu_zamasu 0:b2cea429ec0b 134 ledB = 0;
kazu_zamasu 0:b2cea429ec0b 135 } else {
kazu_zamasu 0:b2cea429ec0b 136 /* control green */
kazu_zamasu 0:b2cea429ec0b 137 ledR = 1;
kazu_zamasu 0:b2cea429ec0b 138 ledG = 0;
kazu_zamasu 0:b2cea429ec0b 139 ledB = 1;
kazu_zamasu 0:b2cea429ec0b 140 }
kazu_zamasu 0:b2cea429ec0b 141 } else {
kazu_zamasu 0:b2cea429ec0b 142 ledR = 1;
kazu_zamasu 0:b2cea429ec0b 143 ledG = 1;
kazu_zamasu 0:b2cea429ec0b 144 ledB = 1;
kazu_zamasu 0:b2cea429ec0b 145 }
Hapi_Tech 3:e4253d33ff0c 146 /*UART debug dispray*/
Hapi_Tech 3:e4253d33ff0c 147 printf("\033[1;1H");
Hapi_Tech 3:e4253d33ff0c 148 printf("OUT %.6f", out.read() * 100);
Hapi_Tech 3:e4253d33ff0c 149 printf("\033[1;20H");
Hapi_Tech 3:e4253d33ff0c 150 printf("Run %d\n", Run);
Hapi_Tech 3:e4253d33ff0c 151 printf("\033[2;1H");
Hapi_Tech 3:e4253d33ff0c 152 printf("PVTemp %.6f\n", temp_pv);
Hapi_Tech 3:e4253d33ff0c 153 printf("\033[2;20H");
Hapi_Tech 3:e4253d33ff0c 154 printf("SPTemp %.6f", temp_sv_input);
Hapi_Tech 3:e4253d33ff0c 155 printf("\033[3;1H");
Hapi_Tech 3:e4253d33ff0c 156 printf("PVread %.6f\n", THAI.read());
Hapi_Tech 3:e4253d33ff0c 157 printf("\033[3;20H");
Hapi_Tech 3:e4253d33ff0c 158 printf("PVTemp %.6f\n",encPulses );
Hapi_Tech 3:e4253d33ff0c 159
kazu_zamasu 0:b2cea429ec0b 160 /*PID control*/
Hapi_Tech 3:e4253d33ff0c 161
Hapi_Tech 3:e4253d33ff0c 162 /* Notice!!! PV_LL and PV_HH if incorrect value, PID output by dead lock.
Hapi_Tech 3:e4253d33ff0c 163 PV_LL= Temperature sensor low side value
Hapi_Tech 3:e4253d33ff0c 164 PV_HH= Temperature sensoe high side value*/
Hapi_Tech 3:e4253d33ff0c 165 #define PV_LL -50.0 //PID PV low side Temp
Hapi_Tech 3:e4253d33ff0c 166 #define PV_HH 150.0 //PID PV high side Temp
Hapi_Tech 3:e4253d33ff0c 167 TIC.setInputLimits(PV_LL, PV_HH);
Hapi_Tech 3:e4253d33ff0c 168
Hapi_Tech 3:e4253d33ff0c 169 /*OV_LL OV_HH PID calcurate output range.
Hapi_Tech 3:e4253d33ff0c 170 If you use low power supply, you can limit output power. OV_HH is maximum 100%=65W at 24V */
kazu_zamasu 0:b2cea429ec0b 171 #define OV_LL 0.0 //PID calcurate output value 0.0 = 0%
kazu_zamasu 0:b2cea429ec0b 172 #define OV_HL 100.0 //PID calcurate output value 1.0 = 100%
kazu_zamasu 0:b2cea429ec0b 173 if (Run == true) {
kazu_zamasu 0:b2cea429ec0b 174 TIC.setOutputLimits(OV_LL, OV_HL);
kazu_zamasu 0:b2cea429ec0b 175 TIC.setSetPoint(temp_sv_input);
kazu_zamasu 0:b2cea429ec0b 176 TIC.setProcessValue(temp_pv);
kazu_zamasu 0:b2cea429ec0b 177 TIC.setBias(Bias); //control output bias
kazu_zamasu 0:b2cea429ec0b 178 TIC.setMode(1);
kazu_zamasu 0:b2cea429ec0b 179 out = TIC.compute() /100;
kazu_zamasu 0:b2cea429ec0b 180 TIC.setInterval(RATE);
kazu_zamasu 0:b2cea429ec0b 181 } else if (Run == false) {
kazu_zamasu 0:b2cea429ec0b 182 TIC.setMode(0);
kazu_zamasu 0:b2cea429ec0b 183 TIC.reset();
kazu_zamasu 0:b2cea429ec0b 184 out = 0.0;
kazu_zamasu 0:b2cea429ec0b 185 }
kazu_zamasu 0:b2cea429ec0b 186 }
kazu_zamasu 0:b2cea429ec0b 187 }