Library for setting and reading the Pololu minIMU 9 v2 sensor
IMU.cpp
- Committer:
- Euler
- Date:
- 2013-10-26
- Revision:
- 0:7b70a3ed96c1
File content as of revision 0:7b70a3ed96c1:
/**
* @author Eric Van den Bulck
*
* @section LICENSE
*
* Copyright (c) 2010 ARM Limited
*
* @section DESCRIPTION
*
* Pololu MinIMU-9 v2 sensor:
* L3GD20 three-axis digital output gyroscope.
* LSM303 three-axis digital accelerometer and magnetometer
*
* Information to build this library:
* 1. The Arduino libraries for this sensor from the Pololu and Adafruit websites, available at gitbub.
* https://github.com/adafruit/Adafruit_L3GD20
* https://github.com/pololu/L3G/tree/master/L3G
* 2. The Rasberry Pi code at https://github.com/idavidstory/goPiCopter/tree/master/io/sensors
* https://github.com/idavidstory/goPiCopter/tree/master/io/sensors
* 3. Information on how to write libraries: http://mbed.org/cookbook/Writing-a-Library
* 4. Information on I2C control: http://mbed.org/users/mbed_official/code/mbed/
* 5. The Youtube videos from Brian Douglas (3 x 15') at http://www.youtube.com/playlist?list=PLUMWjy5jgHK30fkGrufluENJqZmLZkmqI
* http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
* Reading an IMU Without Kalman: The Complementary Filter: http://www.pieter-jan.com/node/11
* setup info on the minIMU-9 v2 on http://forum.pololu.com/viewtopic.php?f=3&t=4801&start=30
*/
#include "mbed.h"
#include "IMU.h"
IMU::IMU(PinName sda, PinName scl) : _i2c(sda, scl) {
_i2c.frequency(400000); /* 400kHz, fast mode. */
}
char IMU::init(void) /* returns error upon a non-zero return */
{
char ack, rx, tx[2];
double pi, a, A;
// 1. Initialize selected registers: 2c.read and i2c.write return 0 on success (ack)
// --------------------------------
//
// 1.a Enable L3DG20 gyrosensor and set operational mode:
// CTRL_REG1: set to 0x1F = 0001-1111 --> enable sensor, DR= 95Hz, LPF-Cut-off-freq=25Hz.
// CTRL_REG1: set to 0x5F = 0101-1111 --> enable sensor, DR=190Hz, LPF-Cut-off-freq=25Hz.
// CTRL_REG4: left at default = 0x00 --> Full Scale = 250 degrees/second --> Sensitivity = 0.00875 dps/digit.
address = L3GD20_ADDR;
tx[0] = L3GD20_CTRL_REG1; // address contrl_register 1
tx[1] = 0x1F; // 00-01-1-111 enable sensor and set operational mode.
ack = _i2c.write(address, tx, 2);
ack |= _i2c.write(address, tx, 1);
ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x1F) ack |= 1;
//
// 1.b Enable LSM303 accelerometer and set operational mode:
// CTRL_REG1: set to 0x37 = 0011 0111 --> DR = 25Hz & enable sensor
// CTRL_REG1: set to 0x47 = 0100 0111 --> DR = 50Hz & enable sensor
// CTRL_REG1: set to 0x57 = 0101 0111 --> DR = 100Hz & enable sensor
// CTRL_REG1: set to 0x77 = 0111 0111 --> DR = 200Hz & enable sensor
// CTRL_REG4: set to 0x08 = 0000 1000 --> Full Scale = +/- 2G & high resolution --> Sensitivity = 0.001G/digit.
address = LSM303_A_ADDR;
tx[0] = LSM303_A_CTRL_REG1;
tx[1] = 0x57; // --> 200 Hz Data rate speed - p.24/42 of datasheet
ack |= _i2c.write(address, tx, 2);
ack |= _i2c.write(address, tx, 1);
ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x57) ack |= 1;
tx[0] = LSM303_A_CTRL_REG4;
tx[1] = 0x08; // 0000 1000 enable high resolution mode + selects default 2G scale. p.26/42
ack |= _i2c.write(address, tx ,2);
ack |= _i2c.write(address, tx, 1);
ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x08) ack |= 1;
//
// 1.c enable LSM303 magnetometer and set operational mode:
// CRA_REG is reset from 0x10 to 0x14 = 00010100 --> 30 Hz data output rate.
// CRA_REG is reset from 0x10 to 0x18 = 00011000 --> 75 Hz data output rate.
// CRA_REG is reset from 0x10 to 0x1C = 00011100 --> 220 Hz data output rate.
// CRB_REG is kept at default = 00100000 = 0x20 --> range +/- 1.3 Gauss, Gain = 1100/980(Z) LSB/Gauss.
// MR_REG is reset from 0x03 to 0x00 -> continuos conversion mode in stead of sleep mode.
address = LSM303_M_ADDR;
tx[0] = LSM303_M_CRA_REG;
tx[1] = 0x18; // --> 75 Hz minimum output rate - p.36/42 of datasheet
ack |= _i2c.write(address, tx, 2);
ack |= _i2c.write(address, tx, 1);
ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x18) ack |= 1;
tx[0] = LSM303_M_MR_REG;
tx[1] = 0x00; // 0000 0000 --> continuous-conversion mode 25 Hz Data rate speed - p.24/42 of datasheet
ack |= _i2c.write(address, tx, 2);
ack |= _i2c.write(address, tx, 1);
ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x00) ack |= 1;
// 2. Initialize calibration constants with predetermined values.
// acceleration:
// My calibration values, vs. the website http://rwsarduino.blogspot.be/2013/01/inertial-orientation-sensing.html
/* my predetermined static bias counts */
L3GD20_biasX = (int16_t) 90; /* digit counts */
L3GD20_biasY = (int16_t) -182;
L3GD20_biasZ = (int16_t) -10;
/* reference gravity acceleration */
g_0 = 9.815;
/* filter parameters: assume 50 Hz sampling rare and 2nd orcer Butterworth filter with fc = 6Hz. */
pi = 3.1415926536;
A = tan(pi*6/50); a = 1 + sqrt(2.0)*A + A*A;
FF[1] = 2*(A*A-1)/a;
FF[2] = (1-sqrt(2.0)*A+A*A)/a;
FF[0] = (1+FF[1]+FF[2])/4;
return ack;
}
char IMU::readData(float *d)
{
char ack, reg, D[6];
int16_t W[3];
// report the data in rad/s
// gyro data are 16 bit readings per axis, stored: X_l, X_h, Y_l, Y_h, Z_l, Z_h
// #define L3GD20_SENSITIVITY_250DPS 0.00875 --- #define L3GD20_DPS_TO_RADS 0.017453293
address = L3GD20_ADDR;
reg = L3GD20_OUT_X_L | 0x80; // set address auto-increment bit
ack = _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6);
W[0] = (int16_t) (D[1] << 8 | D[0]);
W[1] = (int16_t) (D[3] << 8 | D[2]);
W[2] = (int16_t) (D[5] << 8 | D[4]);
*(d+0) = (float) 0.971*(W[0]-L3GD20_biasX)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS;
*(d+1) = (float) 0.998*(W[1]-L3GD20_biasY)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS;
*(d+2) = (float) 1.002*(W[2]-L3GD20_biasZ)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS;
// Accelerometer data are stored as 12 bit readings, left justified per axis.
// The data needs to be shifted 4 digits to the right! This is not general, only for the A measurement.
address = LSM303_A_ADDR;
reg = LSM303_A_OUT_X_L | 0x80; // set address auto-increment bit
ack |= _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6);
W[0] = ((int16_t) (D[1] << 8 | D[0])) >> 4;
W[1] = ((int16_t) (D[3] << 8 | D[2])) >> 4;
W[2] = ((int16_t) (D[5] << 8 | D[4])) >> 4;
*(d+3) = (float) g_0*0.991*(W[0]+34)/1000;
*(d+4) = (float) g_0*0.970*(W[1]+2)/1000;
*(d+5) = (float) g_0*0.983*(W[2]+28)/1000;
// GN = 001
// Magnetometer; are stored as 12 bit readings, right justified per axis.
address = LSM303_M_ADDR;
reg = LSM303_M_OUT_X_H | 0x80; // set address auto-increment bit
ack |= _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6);
W[0] = ((int16_t) (D[0] << 8 | D[1]));
W[1] = ((int16_t) (D[4] << 8 | D[5]));
W[2] = ((int16_t) (D[2] << 8 | D[3]));
*(d+6) = (float) 2.813*(W[0]-264)/1100;
*(d+7) = (float) 2.822*(W[1]- 98)/1100;
*(d+8) = (float) 2.880*(W[2]-305)/980;
return ack;
}
void IMU::filterData(float *d, double *D)
// 2nd order Butterworth filter. Filter coefficients FF computed in function init.
{
for (int i=0; i<9; ++i) {
// *(FD+9*i+2) = *(FD+9*i+1); *(FD+9*i+1) = *(FD+9*i); *(FD+9*i) = (double) d[i];
FD[2][i] = FD[1][i]; FD[1][i] = FD[0][i]; FD[0][i] = (double) d[i];
FD[5][i] = FD[4][i]; FD[4][i] = FD[3][i];
FD[3][i] = FF[0]*(FD[0][i] + 2*FD[1][i] + FD[2][i]) - FF[1]*FD[4][i] - FF[2]*FD[5][i];
D[i] = FD[3][i];
}
// D[0] = FD[0][2]; D[1] = FD[1][2]; D[2] = FD[2][2];
}