EasyCAT LAB - EtherCAT master legacy example

Dependencies:   SPI_STMPE610 TFT_fonts SPI_TFT_ILI9341 SOEM

The EasyCAT LAB is a complete educational and experimental EtherCAT® system, composed of one master and two slaves .

/media/uploads/EasyCAT/easycat_lab.jpg

/media/uploads/EasyCAT/components.jpg

soem_start.cpp

Committer:
sulymarco
Date:
16 months ago
Revision:
6:4b39b4dee215
Parent:
0:7077d8f28b3e

File content as of revision 6:4b39b4dee215:


#include "soem_start.h"
#include "ethercat.h"
#include "string.h"
#include "oshw.h"

#include "mbed.h"

#include <inttypes.h>

#include "SPI_TFT_ILI9341.h"

extern SPI_TFT_ILI9341 TFT;

boolean printSDO = TRUE;			
boolean printMAP = TRUE;			

ec_ODlistt ODlist;
ec_OElistt OElist;
char usdo[128];
char hstr[1024];

char extern IOmap[];

uint32_t error_counter = 0;


char* dtype2string(uint16 dtype);
char* SDO2string(uint16 slave, uint16 index, uint8 subidx, uint16 dtype);
int si_PDOassign(uint16 slave, uint16 PDOassign, int mapoffset, int bitoffset);
void si_sdo(int cnt);
int si_map_sdo(int slave);
int si_siiPDO(uint16 slave, uint8 t, int mapoffset, int bitoffset);
bool network_scanning(void);



//---- convert Ethercat types to string ----------------------------------------


char* dtype2string(uint16 dtype)
{
    switch(dtype)
    {
        case ECT_BOOLEAN:
            sprintf(hstr, "BOOLEAN");
            break;
        case ECT_INTEGER8:
            sprintf(hstr, "INTEGER8");
            break;
        case ECT_INTEGER16:
            sprintf(hstr, "INTEGER16");
            break;
        case ECT_INTEGER32:
            sprintf(hstr, "INTEGER32");
            break;
        case ECT_INTEGER24:
            sprintf(hstr, "INTEGER24");
            break;
        case ECT_INTEGER64:
            sprintf(hstr, "INTEGER64");
            break;
        case ECT_UNSIGNED8:
            sprintf(hstr, "UNSIGNED8");
            break;
        case ECT_UNSIGNED16:
            sprintf(hstr, "UNSIGNED16");
            break;
        case ECT_UNSIGNED32:
            sprintf(hstr, "UNSIGNED32");
            break;
        case ECT_UNSIGNED24:
            sprintf(hstr, "UNSIGNED24");
            break;
        case ECT_UNSIGNED64:
            sprintf(hstr, "UNSIGNED64");
            break;
        case ECT_REAL32:
            sprintf(hstr, "REAL32");
            break;
        case ECT_REAL64:
            sprintf(hstr, "REAL64");
            break;
        case ECT_BIT1:
            sprintf(hstr, "BIT1");
            break;
        case ECT_BIT2:
            sprintf(hstr, "BIT2");
            break;
        case ECT_BIT3:
            sprintf(hstr, "BIT3");
            break;
        case ECT_BIT4:
            sprintf(hstr, "BIT4");
            break;
        case ECT_BIT5:
            sprintf(hstr, "BIT5");
            break;
        case ECT_BIT6:
            sprintf(hstr, "BIT6");
            break;
        case ECT_BIT7:
            sprintf(hstr, "BIT7");
            break;
        case ECT_BIT8:
            sprintf(hstr, "BIT8");
            break;
        case ECT_VISIBLE_STRING:
            sprintf(hstr, "VISIBLE_STRING");
            break;
        case ECT_OCTET_STRING:
            sprintf(hstr, "OCTET_STRING");
            break;
        default:
            sprintf(hstr, "Type 0x%4.4X", dtype);
    }
    return hstr;
}


//------------------------------------------------------------------------------

char* SDO2string(uint16 slave, uint16 index, uint8 subidx, uint16 dtype)
{
   int l = sizeof(usdo) - 1, i;
   uint8 *u8;
   int8 *i8;
   uint16 *u16;
   int16 *i16;
   uint32 *u32;
   int32 *i32;
   uint64 *u64;
   int64 *i64;
   float *sr;
   double *dr;
   char es[32];

   memset(&usdo, 0, 128);
   ec_SDOread(slave, index, subidx, FALSE, &l, &usdo, EC_TIMEOUTRXM);
   if (EcatError)
   {
      return ec_elist2string();
   }
   else
   {
      switch(dtype)
      {
         case ECT_BOOLEAN:
            u8 = (uint8*) &usdo[0];
            if (*u8) sprintf(hstr, "TRUE");
             else sprintf(hstr, "FALSE");
            break;
         case ECT_INTEGER8:
            i8 = (int8*) &usdo[0];
            sprintf(hstr, "0x%2.2x %d", *i8, *i8);
            break;
         case ECT_INTEGER16:
            i16 = (int16*) &usdo[0];
            sprintf(hstr, "0x%4.4x %d", *i16, *i16);
            break;
         case ECT_INTEGER32:
         case ECT_INTEGER24:
            i32 = (int32*) &usdo[0];
            sprintf(hstr, "0x%8.8x %d", *i32, *i32);
            break;
         case ECT_INTEGER64:
            i64 = (int64*) &usdo[0];
            sprintf(hstr, "0x%16.16"PRIx64" %"PRId64, *i64, *i64);
            break;
         case ECT_UNSIGNED8:
            u8 = (uint8*) &usdo[0];
            sprintf(hstr, "0x%2.2x %u", *u8, *u8);
            break;
         case ECT_UNSIGNED16:
            u16 = (uint16*) &usdo[0];
            sprintf(hstr, "0x%4.4x %u", *u16, *u16);
            break;
         case ECT_UNSIGNED32:
         case ECT_UNSIGNED24:
            u32 = (uint32*) &usdo[0];
            sprintf(hstr, "0x%8.8x %u", *u32, *u32);
            break;
         case ECT_UNSIGNED64:
            u64 = (uint64*) &usdo[0];
            sprintf(hstr, "0x%16.16"PRIx64" %"PRIu64, *u64, *u64);
            break;
         case ECT_REAL32:
            sr = (float*) &usdo[0];
            sprintf(hstr, "%f", *sr);
            break;
         case ECT_REAL64:
            dr = (double*) &usdo[0];
            sprintf(hstr, "%f", *dr);
            break;
         case ECT_BIT1:
         case ECT_BIT2:
         case ECT_BIT3:
         case ECT_BIT4:
         case ECT_BIT5:
         case ECT_BIT6:
         case ECT_BIT7:
         case ECT_BIT8:
            u8 = (uint8*) &usdo[0];
            sprintf(hstr, "0x%x", *u8);
            break;
         case ECT_VISIBLE_STRING:
            strcpy(hstr, usdo);
            break;
         case ECT_OCTET_STRING:
            hstr[0] = 0x00;
            for (i = 0 ; i < l ; i++)
            {
               sprintf(es, "0x%2.2x ", usdo[i]);
               strcat( hstr, es);
            }
            break;
         default:
            sprintf(hstr, "Unknown type");
      }
      return hstr;
   }
}


//----- read PDO assign structure ----------------------------------------------

int si_PDOassign(uint16 slave, uint16 PDOassign, int mapoffset, int bitoffset)
{
    uint16 idxloop, nidx, subidxloop, rdat, idx, subidx;
    uint8 subcnt;
    int wkc, bsize = 0, rdl;
    int32 rdat2;
    uint8 bitlen, obj_subidx;
    uint16 obj_idx;
    int abs_offset, abs_bit;

    rdl = sizeof(rdat); rdat = 0;
    															// read PDO assign subindex 0 (= number of PDO's)
    wkc = ec_SDOread(slave, PDOassign, 0x00, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);
    rdat = etohs(rdat);

    if ((wkc > 0) && (rdat > 0))							    // positive result from slave?
    {
        nidx = rdat;											// number of available sub indexes 
        bsize = 0;
        
        for (idxloop = 1; idxloop <= nidx; idxloop++)			// read all PDO's 
        {
            rdl = sizeof(rdat); rdat = 0;
            													// read PDO assign 
            wkc = ec_SDOread(slave, PDOassign, (uint8)idxloop, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);
            										
            idx = etohl(rdat);									// result is index of PDO
            if (idx > 0)
            {
                rdl = sizeof(subcnt); subcnt = 0;
                												// read number of subindexes of PDO
                wkc = ec_SDOread(slave,idx, 0x00, FALSE, &rdl, &subcnt, EC_TIMEOUTRXM);
                subidx = subcnt;
                												// for each subindex 
                for (subidxloop = 1; subidxloop <= subidx; subidxloop++)
                {
                    rdl = sizeof(rdat2); rdat2 = 0;
                    											// read SDO that is mapped in PDO
                    wkc = ec_SDOread(slave, idx, (uint8)subidxloop, FALSE, &rdl, &rdat2, EC_TIMEOUTRXM);
                    rdat2 = etohl(rdat2);
                    
                    bitlen = LO_BYTE(rdat2);					// extract bitlength of SDO
                    bsize += bitlen;
                    obj_idx = (uint16)(rdat2 >> 16);
                    obj_subidx = (uint8)((rdat2 >> 8) & 0x000000ff);
                    abs_offset = mapoffset + (bitoffset / 8);
                    abs_bit = bitoffset % 8;
                    ODlist.Slave = slave;
                    ODlist.Index[0] = obj_idx;
                    OElist.Entries = 0;
                    wkc = 0;
                    											
                    if(obj_idx || obj_subidx)					// read object entry from dictionary if not a filler (0x0000:0x00)
                        wkc = ec_readOEsingle(0, obj_subidx, &ODlist, &OElist);
                    printf("  [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);
                    
                    if((wkc > 0) && OElist.Entries)
                    {
                        printf(" %-12s %s\n", dtype2string(OElist.DataType[obj_subidx]), OElist.Name[obj_subidx]);
                    }
                    else
                        printf("\n");
                    bitoffset += bitlen;
                };
            };
        };
    };

    return bsize;											    // return total found bitlength (PDO)
}


//---- PDO mapping according to CoE --------------------------------------------

int si_map_sdo(int slave)
{
    int wkc, rdl;
    int retVal = 0;
    uint8 nSM, iSM, tSM;
    int Tsize, outputs_bo, inputs_bo;
    uint8 SMt_bug_add;

    printf("PDO mapping according to CoE :\n\n");
    SMt_bug_add = 0;
    outputs_bo = 0;
    inputs_bo = 0;
    rdl = sizeof(nSM); nSM = 0;
    														// read SyncManager Communication Type object count
    wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, 0x00, FALSE, &rdl, &nSM, EC_TIMEOUTRXM);
    														
    if ((wkc > 0) && (nSM > 2))								// positive result from slave ? 
    {   
        nSM--;               								// make nSM equal to number of defined SM 
        
        if (nSM > EC_MAXSM)									// limit to maximum number of SM defined,
            nSM = EC_MAXSM;									// if true the slave can't be configured 
        
        for (iSM = 2 ; iSM <= nSM ; iSM++)					// iterate for every SM type defined 		
        {
            rdl = sizeof(tSM); tSM = 0;
            												// read SyncManager Communication Type 
            wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, iSM + 1, FALSE, &rdl, &tSM, EC_TIMEOUTRXM);
            if (wkc > 0)
            {
                if((iSM == 2) && (tSM == 2)) 				// SM2 has type 2 == mailbox out, this is a bug in the slave!
                {
                    SMt_bug_add = 1; 						// try to correct, this works if the types are 0 1 2 3 and should be 1 2 3 4
                    printf("Activated SM type workaround, possible incorrect mapping.\n");
                }
                
                if(tSM)										// only add if SMt > 0
                    tSM += SMt_bug_add; 					

                if (tSM == 3) 								// outputs
                {											// read the assign RXPDO
                 
                    printf("  SM%1d outputs\n        addr b   index: sub bitl data_type    name\n", iSM);
                    Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].outputs - (uint8 *)&IOmap[0]), outputs_bo );
                    outputs_bo += Tsize;
                }
                
                if (tSM == 4) 								// inputs
                {											// read the assign TXPDO 
                    
                    printf("  SM%1d inputs\n     addr b   index: sub bitl data_type    name\n", iSM);
                    Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].inputs - (uint8 *)&IOmap[0]), inputs_bo );
                    inputs_bo += Tsize;
                }
            }
        }
    }

    if ((outputs_bo > 0) || (inputs_bo > 0))				// found some I/O bits? 
        retVal = 1;
    return retVal;
}


//---- CoE objects description -------------------------------------------------

void si_sdo(int cnt)
{
    int i, j;

    ODlist.Entries = 0;
    memset(&ODlist, 0, sizeof(ODlist));
    if( ec_readODlist(cnt, &ODlist))
    {
        printf(" CoE Object Description found, %d entries.\n",ODlist.Entries);
        for( i = 0 ; i < ODlist.Entries ; i++)
        {
            ec_readODdescription(i, &ODlist);
            while(EcatError) printf("%s", ec_elist2string());
            printf(" Index: %4.4x Datatype: %4.4x Objectcode: %2.2x Name: %s\n",
                ODlist.Index[i], ODlist.DataType[i], ODlist.ObjectCode[i], ODlist.Name[i]);
            memset(&OElist, 0, sizeof(OElist));
            ec_readOE(i, &ODlist, &OElist);
            while(EcatError) printf("%s", ec_elist2string());
            for( j = 0 ; j < ODlist.MaxSub[i]+1 ; j++)
            {
                if ((OElist.DataType[j] > 0) && (OElist.BitLength[j] > 0))
                {
                    printf("  Sub: %2.2x Datatype: %4.4x Bitlength: %4.4x Obj.access: %4.4x Name: %s\n",
                        j, OElist.DataType[j], OElist.BitLength[j], OElist.ObjAccess[j], OElist.Name[j]);
                    if ((OElist.ObjAccess[j] & 0x0007))
                    {
                        printf("          Value :%s\n", SDO2string(cnt, ODlist.Index[i], j, OElist.DataType[j]));
                    }
                }
            }
        }
    }
    else
    {
        while(EcatError) printf("%s", ec_elist2string());
    }
}


//---- PDO mapping according to SII --------------------------------------------

int si_map_sii(int slave)
{
    int retVal = 0;
    int Tsize, outputs_bo, inputs_bo;

    printf("\nPDO mapping according to SII :\n\n");

    outputs_bo = 0;
    inputs_bo = 0;
    														// read the assign RXPDOs 
    Tsize = si_siiPDO(slave, 1, (int)(ec_slave[slave].outputs - (uint8*)&IOmap), outputs_bo );
    outputs_bo += Tsize;
    														// read the assign TXPDOs 
    Tsize = si_siiPDO(slave, 0, (int)(ec_slave[slave].inputs - (uint8*)&IOmap), inputs_bo );
    inputs_bo += Tsize;
    
    if ((outputs_bo > 0) || (inputs_bo > 0))				// found some I/O bits ? 
        retVal = 1;
    return retVal;
}


//------------------------------------------------------------------------------

int si_siiPDO(uint16 slave, uint8 t, int mapoffset, int bitoffset)
{
    uint16 a , w, c, e, er, Size;
    uint8 eectl;
    uint16 obj_idx;
    uint8 obj_subidx;
    uint8 obj_name;
    uint8 obj_datatype;
    uint8 bitlen;
    int totalsize;
    ec_eepromPDOt eepPDO;
    ec_eepromPDOt *PDO;
    int abs_offset, abs_bit;
    char str_name[EC_MAXNAME + 1];

    eectl = ec_slave[slave].eep_pdi;
    Size = 0;
    totalsize = 0;
    PDO = &eepPDO;
    PDO->nPDO = 0;
    PDO->Length = 0;
    PDO->Index[1] = 0;
  
    for (c = 0 ; c < EC_MAXSM ; c++)
    	PDO->SMbitsize[c] = 0;
  
    if (t > 1)
        t = 1;
  
    PDO->Startpos = ec_siifind(slave, ECT_SII_PDO + t);
  
    if (PDO->Startpos > 0)
    {
        a = PDO->Startpos;
        w = ec_siigetbyte(slave, a++);
        w += (ec_siigetbyte(slave, a++) << 8);
        PDO->Length = w;
        c = 1;
        
        do													// traverse through all PDOs			
        {
            PDO->nPDO++;
            PDO->Index[PDO->nPDO] = ec_siigetbyte(slave, a++);
            PDO->Index[PDO->nPDO] += (ec_siigetbyte(slave, a++) << 8);
            PDO->BitSize[PDO->nPDO] = 0;
            c++;
            
            e = ec_siigetbyte(slave, a++);					// number of entries in PDO 
            PDO->SyncM[PDO->nPDO] = ec_siigetbyte(slave, a++);
            a++;
            obj_name = ec_siigetbyte(slave, a++);
            a += 2;
            c += 2;
            
            if (PDO->SyncM[PDO->nPDO] < EC_MAXSM) 			// active and in range SM? 
            {
                str_name[0] = 0;
                if(obj_name)
                	ec_siistring(str_name, slave, obj_name);
                	
                if (t)
                  	printf("  SM%1d RXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);
                else
                  	printf("  SM%1d TXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);
                
                printf("     addr b   index: sub  bitl data_type    name\n");
                
                for (er = 1; er <= e; er++)					// read all entries defined in PDO 
                {
                    c += 4;
                    obj_idx = ec_siigetbyte(slave, a++);
                    obj_idx += (ec_siigetbyte(slave, a++) << 8);
                    obj_subidx = ec_siigetbyte(slave, a++);
                    obj_name = ec_siigetbyte(slave, a++);
                    obj_datatype = ec_siigetbyte(slave, a++);
                    bitlen = ec_siigetbyte(slave, a++);
                    abs_offset = mapoffset + (bitoffset / 8);
                    abs_bit = bitoffset % 8;

                    PDO->BitSize[PDO->nPDO] += bitlen;
                    a += 2;

                    if(obj_idx || obj_subidx)				// skip entry if filler (0x0000:0x00)
                    {
                       str_name[0] = 0;
                       if(obj_name)
                          ec_siistring(str_name, slave, obj_name);

                       printf("  [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);
                       printf(" %-12s %s\n", dtype2string(obj_datatype), str_name);
                    }
                    bitoffset += bitlen;
                    totalsize += bitlen;
                }
                PDO->SMbitsize[ PDO->SyncM[PDO->nPDO] ] += PDO->BitSize[PDO->nPDO];
                Size += PDO->BitSize[PDO->nPDO];
                c++;
            }
            
            else 											// PDO deactivated because SM is 0xff or > EC_MAXSM 
            {
                c += 4 * e;
                a += 8 * e;
                c++;
            }
            												// limit number of PDO entries in buffer 
            if (PDO->nPDO >= (EC_MAXEEPDO - 1)) c = PDO->Length; 
        }
        while (c < PDO->Length);
    }
                                        
    if (eectl) 
    	ec_eeprom2pdi(slave); 								// if eeprom control was previously pdi then restore 
    
    return totalsize;
}


//------------------------------------------------------------------------------

bool network_scanning(void)

{
    int expectedWKC;
	int cnt, i, j, nSM;
   	uint16 ssigen;	     	

    if ( ec_config(FALSE, &IOmap) > 0 )  					// find and configure the slaves	
  	{
     	ec_configdc();
     	while(EcatError) printf("%s", ec_elist2string());
     	
     	printf("%d slaves found and configured.\n",ec_slavecount);
 	 	TFT.printf("%d slaves found and configured.\n\n",ec_slavecount);	     	
     	
     	expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;
     	printf("Calculated workcounter %d\n", expectedWKC);
     														// wait for all slaves to reach SAFE_OP state 
     	ec_statecheck(0, EC_STATE_SAFE_OP,  EC_TIMEOUTSTATE * 3);
     	
     	if (ec_slave[0].state != EC_STATE_SAFE_OP )
     	{
        	printf("Not all slaves reached safe operational state.\n");
        	ec_readstate();
        	for(i = 1; i<=ec_slavecount ; i++)
        	{
           		if(ec_slave[i].state != EC_STATE_SAFE_OP)
           		{
              		printf("Slave %d State=%2x StatusCode=%4x : %s\n",
                	i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));
           		}
         	}  		
        }

		ec_readstate();			
				        				        
		for( cnt = 1 ; cnt <= ec_slavecount ; cnt++)
		{  
            printf("\nSlave:%d -------------------------------------------------\nName:%s\n Output size: %dbits\n Input size: %dbits\n State: %d\n Delay: %d[ns]\n Has DC: %d\n",
                  	cnt, ec_slave[cnt].name, ec_slave[cnt].Obits, ec_slave[cnt].Ibits,
                  	ec_slave[cnt].state, ec_slave[cnt].pdelay, ec_slave[cnt].hasdc);         

			int Line = cnt-1; 

			TFT.foreground(Green);							// print Name, Manufacturer, ID and Revision
			TFT.locate(0, 12*(((Line % 6)*3)+3));			// of the slaves found on the TFT
            TFT.printf("Slave %d ", cnt); 					//
			TFT.foreground(Yellow);							//	
															//
			TFT.foreground(Magenta);						//
			TFT.locate(60, 12*(((Line % 6)*3)+3));			//	
            TFT.printf("Name"); 							//
            TFT.foreground(Yellow);							//
			TFT.locate(104, 12*(((Line % 6)*3)+3));         //  	 
            TFT.printf("%.14s", ec_slave[cnt].name);  		//	             
                											//
			TFT.foreground(Magenta); 						//
			TFT.locate(220, 12*(((Line % 6)*3)+3));			//  	                    
            TFT.printf("Man");								//
            TFT.foreground(Yellow);  						//
			TFT.locate(250, 12*(((Line % 6)*3)+3));	        //      
            TFT.printf("%8.8X", (int)ec_slave[cnt].eep_man);//
               												//		
			TFT.foreground(Magenta);   						//
			TFT.locate(60, 12*(((Line % 6)*3)+4));			//                    
            TFT.printf("ID");            					//
            TFT.foreground(Yellow);							//
			TFT.locate(104, 12*(((Line % 6)*3)+4));         //                 
            TFT.printf("%8.8X", (int)ec_slave[cnt].eep_id); //       
 															//
			TFT.foreground(Magenta);   						//
			TFT.locate(220, 12*(((Line % 6)*3)+4));			//                    
            TFT.printf("Rev ");            					//
            TFT.foreground(Yellow);   						//
			TFT.locate(250,  12*(((Line % 6)*3)+4));	    //                 
            TFT.printf("%8.8X", (int)ec_slave[cnt].eep_rev);//    
                                                             
                          
            if (ec_slave[cnt].hasdc) printf(" DCParentport:%d\n", ec_slave[cnt].parentport);
            printf(" Activeports:%d.%d.%d.%d\n", (ec_slave[cnt].activeports & 0x01) > 0 ,
                                         (ec_slave[cnt].activeports & 0x02) > 0 ,
                                         (ec_slave[cnt].activeports & 0x04) > 0 ,
                                         (ec_slave[cnt].activeports & 0x08) > 0 );
                                         
            printf(" Configured address: %4.4X\n", ec_slave[cnt].configadr);
        	printf(" Outputs address: %X\n", ec_slave[cnt].outputs);
    		printf(" Inputs address: %X\n", ec_slave[cnt].inputs);            
            
            printf(" Man: %8.8x ID: %8.8x Rev: %8.8x\n", (int)ec_slave[cnt].eep_man, (int)ec_slave[cnt].eep_id, (int)ec_slave[cnt].eep_rev);
            for(nSM = 0 ; nSM < EC_MAXSM ; nSM++)
            {
               if(ec_slave[cnt].SM[nSM].StartAddr > 0)
                  printf(" SM%1d A:%4.4x L:%4d F:%8.8x Type:%d\n",nSM, ec_slave[cnt].SM[nSM].StartAddr, ec_slave[cnt].SM[nSM].SMlength,
                         (int)ec_slave[cnt].SM[nSM].SMflags, ec_slave[cnt].SMtype[nSM]);
            }
            for(j = 0 ; j < ec_slave[cnt].FMMUunused ; j++)
            {
               printf(" FMMU%1d Ls:%8.8x Ll:%4d Lsb:%d Leb:%d Ps:%4.4x Psb:%d Ty:%2.2x Act:%2.2x\n", j,
                       (int)ec_slave[cnt].FMMU[j].LogStart, ec_slave[cnt].FMMU[j].LogLength, ec_slave[cnt].FMMU[j].LogStartbit,
                       ec_slave[cnt].FMMU[j].LogEndbit, ec_slave[cnt].FMMU[j].PhysStart, ec_slave[cnt].FMMU[j].PhysStartBit,
                       ec_slave[cnt].FMMU[j].FMMUtype, ec_slave[cnt].FMMU[j].FMMUactive);
            }
            printf(" FMMUfunc 0:%d 1:%d 2:%d 3:%d\n",
                     ec_slave[cnt].FMMU0func, ec_slave[cnt].FMMU1func, ec_slave[cnt].FMMU2func, ec_slave[cnt].FMMU3func);
            printf(" MBX length wr: %d rd: %d MBX protocols : %2.2x\n", ec_slave[cnt].mbx_l, ec_slave[cnt].mbx_rl, ec_slave[cnt].mbx_proto);
            ssigen = ec_siifind(cnt, ECT_SII_GENERAL);
            	
            if (ssigen)										 // SII general section 
            {
               ec_slave[cnt].CoEdetails = ec_siigetbyte(cnt, ssigen + 0x07);
               ec_slave[cnt].FoEdetails = ec_siigetbyte(cnt, ssigen + 0x08);
               ec_slave[cnt].EoEdetails = ec_siigetbyte(cnt, ssigen + 0x09);
               ec_slave[cnt].SoEdetails = ec_siigetbyte(cnt, ssigen + 0x0a);
               if((ec_siigetbyte(cnt, ssigen + 0x0d) & 0x02) > 0)
               {
                  ec_slave[cnt].blockLRW = 1;
                  ec_slave[0].blockLRW++;
               }
               ec_slave[cnt].Ebuscurrent = ec_siigetbyte(cnt, ssigen + 0x0e);
               ec_slave[cnt].Ebuscurrent += ec_siigetbyte(cnt, ssigen + 0x0f) << 8;
               ec_slave[0].Ebuscurrent += ec_slave[cnt].Ebuscurrent;
    		}
            printf(" CoE details: %2.2x FoE details: %2.2x EoE details: %2.2x SoE details: %2.2x\n",
                    ec_slave[cnt].CoEdetails, ec_slave[cnt].FoEdetails, ec_slave[cnt].EoEdetails, ec_slave[cnt].SoEdetails);
            printf(" Ebus current: %d[mA]\n only LRD/LWR:%d\n",
                    ec_slave[cnt].Ebuscurrent, ec_slave[cnt].blockLRW);
                    
            if ((ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE) && printSDO)
            	si_sdo(cnt);
                    
            if(printMAP)
            {
        		if (ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE)   
                	si_map_sdo(cnt);
                else
                	si_map_sii(cnt);
            }
		}		
		return 1;
	}
	
	else
	{	
  	//	ec_close();		//******// 
  		
  		return 0;											// no slaves found
	}	
}